Rectifier circuits of bounded depth
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 1, pp. 120-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotically tight bounds are obtained for the complexity of computation of the classes of (m,n)-matrices with entries from the set {0,1,,q1} by rectifier circuits of bounded depth d, under some relations between m,n, and q. In the most important case of q=2, it is shown that the asymptotics of the complexity of Boolean (m,n)-matrices, logn=o(m), logm=o(n), is achieved for the circuits of depth 3. Illustr. 1, bibliogr. 11.
Mots-clés : rectifier circuit, complexity, depth.
@article{DA_2018_25_1_a5,
     author = {I. S. Sergeev},
     title = {Rectifier circuits of bounded depth},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {120--141},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/DA_2018_25_1_a5/}
}
TY  - JOUR
AU  - I. S. Sergeev
TI  - Rectifier circuits of bounded depth
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2018
SP  - 120
EP  - 141
VL  - 25
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DA_2018_25_1_a5/
LA  - ru
ID  - DA_2018_25_1_a5
ER  - 
%0 Journal Article
%A I. S. Sergeev
%T Rectifier circuits of bounded depth
%J Diskretnyj analiz i issledovanie operacij
%D 2018
%P 120-141
%V 25
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DA_2018_25_1_a5/
%G ru
%F DA_2018_25_1_a5
I. S. Sergeev. Rectifier circuits of bounded depth. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 1, pp. 120-141. https://geodesic-test.mathdoc.fr/item/DA_2018_25_1_a5/

[1] S. B. Gashkov, V. V. Kochergin, “On addition chains of vectors, gate circuits, and the complexity of computations of powers”, Sib. Adv. Math., 4:4 (1994), 1–16 | MR | MR

[2] S. B. Gashkov, I. S. Sergeev, “An application of the method of additive chains to inversion in finite fields”, Discrete Math. Appl., 16:6 (2006), 601–618 | DOI | DOI | MR | Zbl

[3] V. V. Kochergin, “On the complexity of calculating systems of monomials with restrictions on the powers of variables”, Discrete Math. Appl., 8:4 (1998), 375–382 | DOI | DOI | MR | Zbl

[4] V. V. Kochergin, “The theory of rectifier circuits (the present state)”, Discrete Mathematics and Its Applications, 7, Izd. IPM RAN, Moscow, 2013, 23–40

[5] O. B. Lupanov, “On rectifier and switching-and-rectifier schemes”, Dokl. Akad. Nauk SSSR, 111:6 (1956), 1171–1174

[6] E. I. Nechiporuk, “Rectifier networks”, Sov. Phys. Dokl., 8 (1963), 5–7 | Zbl

[7] E. I. Nechiporuk, “On the topological principles of self-correction”, Systems Theory Res., 21, 1970, 1–99 | MR

[8] Brauer A., “On addition chains”, Bull. Amer. Math. Soc., 45 (1939), 736–739 | DOI | MR

[9] Jukna S., Sergeev I., “Complexity of linear Boolean operators”, Found. Trends Theor. Comput. Sci., 9:1 (2013), 1–123 | DOI | MR

[10] Pippenger N., “The minimum number of edges in graphs with prescribed paths”, Math. Syst. Theory, 12 (1979), 325–346 | DOI | MR

[11] Pippenger N., “On the evaluation of powers and monomials”, SIAM J. Comput., 9:2 (1980), 230–250 | DOI | MR