Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2018_25_1_a2, author = {V. V. Kochergin and A. V. Mikhailovich}, title = {On the complexity of multivalued logic functions over some infinite basis}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {42--74}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2018}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/DA_2018_25_1_a2/} }
TY - JOUR AU - V. V. Kochergin AU - A. V. Mikhailovich TI - On the complexity of multivalued logic functions over some infinite basis JO - Diskretnyj analiz i issledovanie operacij PY - 2018 SP - 42 EP - 74 VL - 25 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DA_2018_25_1_a2/ LA - ru ID - DA_2018_25_1_a2 ER -
%0 Journal Article %A V. V. Kochergin %A A. V. Mikhailovich %T On the complexity of multivalued logic functions over some infinite basis %J Diskretnyj analiz i issledovanie operacij %D 2018 %P 42-74 %V 25 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/DA_2018_25_1_a2/ %G ru %F DA_2018_25_1_a2
V. V. Kochergin; A. V. Mikhailovich. On the complexity of multivalued logic functions over some infinite basis. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 1, pp. 42-74. https://geodesic-test.mathdoc.fr/item/DA_2018_25_1_a2/
[1] N. A. Karpova, “Some properties of Shannon functions”, Math. Notes, 8:5 (1970), 843–849 | DOI | MR | Zbl
[2] O. M. Kasim-Zade, “Complexity of circuits in an infinite basis”, Vestn. Mosk. Univ. Ser. 1, 1994, no. 6, 40–44 (Russian) | MR
[3] O. M. Kasim-Zade, “Orders of growth of Shannon functions for circuit complexity over infinite bases”, Mosc. Univ. Math. Bull., 68:3 (2013), 170–172 | DOI | MR
[4] V. V. Kochergin, “Theory of rectifier circuits (the current state)”, Discrete Mathematics and Its Applications, 7, Izd. IPM RAN, Moscow, 2013, 23–40, (accessed Nov. 16, 2017) Russian Available at http://www.keldysh.ru/dmschool/datastore/media/dmsc9_lect7.pdf
[5] V. V. Kochergin, A. V. Mikhailovich, “On the complexity of circuits in bases containing monotone elements with zero weights”, Prikl. Diskretn. Mat., 2015, no. 4, 24–31 (Russian) | DOI
[6] V. V. Kochergin, A. V. Mikhailovich, “The minimum number of negations in circuits for systems of multi-valued functions”, Discrete Math. Appl., 27:5 (2017), 295–302 | DOI | DOI | MR
[7] O. B. Lupanov, “The synthesis of circuits from threshold elements”, Problems of Cybernetics, 26, Nauka, Moscow, 1973, 109–140 (Russian)
[8] O. B. Lupanov, Asymptotic Estimations of Complexity of Control Systems, Izd. Mosk. Univ., Moscow, 1984 (Russian)
[9] A. A. Markov, “On the inversion complexity of a system of functions”, J. ACM, 5:4 (1958), 331–334 | DOI | MR | MR | Zbl
[10] A. A. Markov, “On the inversion complexity of systems of Boolean functions”, Sov. Math. Dokl., 4 (1963), 694–696 | MR | Zbl
[11] E. I. Nechiporuk, “On the complexity of circuits in some bases containing nontrivial elements with zero weights”, Problems of Cybernetics, 8, Fizmatgiz, Moscow, 1962, 123–160 (Russian) | MR
[12] E. I. Nechiporuk, “On a synthesis of schemes of threshold elements”, Problems of Cybernetics, 11, Nauka, Moscow, 1964, 49–62 (Russian) | MR
[13] O. V. Podolskaya, “Circuit complexity of symmetric Boolean functions in an antichain basis”, Discrete Math. Appl., 26:1 (2016), 31–39 | DOI | DOI | MR
[14] J. E. Savage, The Complexity of Computing, Wiley, New York, 1976 | MR
[15] Blais E., Canonne C. L., Oliveira I. C., Servedio R. A., Tan L.-Y., Learning circuits with few negations, Electron. Colloq. Comput. Complex., Rep. No. 144, Available at , 2014, (accessed Nov. 16, 2017) http://eccc.weizmann.ac.il/report/2014/144/download
[16] Gilbert E. N., “Lattice theoretic properties of frontal switching functions”, J. Math. Phys., 33:1 (1954), 57–67 | DOI | MR
[17] Guo S., Malkin T., Oliveira I. C., Rosen A., “The power of negations in cryptography”, Theory of cryptography, Lect. Notes Comput. Sci., 9014, Springer-Verl., Heidelberg, 2015, 36–65 | DOI | MR
[18] Fischer M. J., “The complexity of negation-limited networks – A brief survey”, Automata theory and formal languages, Lect. Notes Comput. Sci., 33, Springer-Verl., Berlin, 1975, 71–82 | DOI | MR
[19] Jukna S., Boolean function complexity: Advances and frontiers, Algorithms Comb., 27, Springer-Verl., Heidelberg, 2012 | MR
[20] Kochergin V. V., Mikhailovich A. V., Some extensions of the inversion complexity of Boolean functions, Cornell Univ. Libr. e-Print Archive, 2015, arXiv: 1506.04485
[21] Kochergin V. V., Mikhailovich A. V., Inversion complexity of functions of multi-valued logic, Cornell Univ. Libr. e-Print Archive, 2015, arXiv: 1510.05942
[22] Morizumi H., A note on the inversion complexity of Boolean functions in Boolean formulas, Cornell Univ. Libr. e-Print Archive, 2008, arXiv: 0811.0699
[23] Pippenger N., “The mimimum number of edges in graphs with prescribed paths”, Math. Syst. Theory, 12:4 (1979), 325–346 | MR
[24] Sung S., Tanaka K., “Limiting negations in bounded-depth circuits: An extension of Markovs theorem”, Algorithms and computation, Lect. Notes Comput. Sci., 2906, Springer-Verl., Heidelberg, 2003, 108–116 | DOI | MR