A two-level linear programming problem with a multivariant knapsack at the lower level
Diskretnyj analiz i issledovanie operacij, Tome 10 (2003) no. 1, pp. 44-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DA_2003_10_1_a2,
     author = {A. V. Plyasunov},
     title = {A two-level linear programming problem with a multivariant knapsack at the lower level},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {44--52},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2003},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/DA_2003_10_1_a2/}
}
TY  - JOUR
AU  - A. V. Plyasunov
TI  - A two-level linear programming problem with a multivariant knapsack at the lower level
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2003
SP  - 44
EP  - 52
VL  - 10
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DA_2003_10_1_a2/
LA  - ru
ID  - DA_2003_10_1_a2
ER  - 
%0 Journal Article
%A A. V. Plyasunov
%T A two-level linear programming problem with a multivariant knapsack at the lower level
%J Diskretnyj analiz i issledovanie operacij
%D 2003
%P 44-52
%V 10
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DA_2003_10_1_a2/
%G ru
%F DA_2003_10_1_a2
A. V. Plyasunov. A two-level linear programming problem with a multivariant knapsack at the lower level. Diskretnyj analiz i issledovanie operacij, Tome 10 (2003) no. 1, pp. 44-52. https://geodesic-test.mathdoc.fr/item/DA_2003_10_1_a2/

[1] Kochetov Yu. A., Plyasunov A. V., “Polinomialno razreshimyi klass zadach dvukhurovnevogo lineinogo programmirovaniya”, Diskret. analiz i issled. operatsii. Ser. 2, 4:2 (1997), 23–33 | MR

[2] Plyasunov A. V., “Polinomialno razreshimyi klass zadach dvukhurovnevogo nelineinogo programmirovaniya”, Diskret. analiz i issled. operatsii. Ser. 2, 7:2 (2000), 89–113 | MR | Zbl

[3] Plyasunov A. V., “Ob odnom podkhode k resheniyu zadach dvukhurovnevogo programmirovaniya”, Trudy XII Baikalskoi mezhdunar. konf. “Metody optimizatsii i ikh prilozheniya” (Irkutsk, 24 iyunya–1 iyulya 2001 g.), Irkutsk, 2001, 227–231

[4] Skhreiver A., Teoriya lineinogo i tselochislennogo programmirovaniya, Mir, M., 1991

[5] Dyer M. E., Kayal N., Walker J., “A branch and bound algorithm for solving the multiple-choice knapsak program”, J. Comput. and Appl. Math., 11:1 (1984), 231–249 | DOI | MR | Zbl

[6] Ibaraki T., Hasegawa T., Teranaka K., Iwase J., “The multiple-choice knapsak problem”, J. Oper. Res. Soc. Jap., 21:1 (1978), 59–93 | MR