Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2003_10_1_a2, author = {A. V. Plyasunov}, title = {A two-level linear programming problem with a multivariant knapsack at the lower level}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {44--52}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2003}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/DA_2003_10_1_a2/} }
TY - JOUR AU - A. V. Plyasunov TI - A two-level linear programming problem with a multivariant knapsack at the lower level JO - Diskretnyj analiz i issledovanie operacij PY - 2003 SP - 44 EP - 52 VL - 10 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DA_2003_10_1_a2/ LA - ru ID - DA_2003_10_1_a2 ER -
A. V. Plyasunov. A two-level linear programming problem with a multivariant knapsack at the lower level. Diskretnyj analiz i issledovanie operacij, Tome 10 (2003) no. 1, pp. 44-52. https://geodesic-test.mathdoc.fr/item/DA_2003_10_1_a2/
[1] Kochetov Yu. A., Plyasunov A. V., “Polinomialno razreshimyi klass zadach dvukhurovnevogo lineinogo programmirovaniya”, Diskret. analiz i issled. operatsii. Ser. 2, 4:2 (1997), 23–33 | MR
[2] Plyasunov A. V., “Polinomialno razreshimyi klass zadach dvukhurovnevogo nelineinogo programmirovaniya”, Diskret. analiz i issled. operatsii. Ser. 2, 7:2 (2000), 89–113 | MR | Zbl
[3] Plyasunov A. V., “Ob odnom podkhode k resheniyu zadach dvukhurovnevogo programmirovaniya”, Trudy XII Baikalskoi mezhdunar. konf. “Metody optimizatsii i ikh prilozheniya” (Irkutsk, 24 iyunya–1 iyulya 2001 g.), Irkutsk, 2001, 227–231
[4] Skhreiver A., Teoriya lineinogo i tselochislennogo programmirovaniya, Mir, M., 1991
[5] Dyer M. E., Kayal N., Walker J., “A branch and bound algorithm for solving the multiple-choice knapsak program”, J. Comput. and Appl. Math., 11:1 (1984), 231–249 | DOI | MR | Zbl
[6] Ibaraki T., Hasegawa T., Teranaka K., Iwase J., “The multiple-choice knapsak problem”, J. Oper. Res. Soc. Jap., 21:1 (1978), 59–93 | MR