Musielak−Orlicz−Sobolev spaces on arbitrary metrique space
Commentationes Mathematicae, Tome 56 (2016) no. 2.

Voir la notice de l'article dans European Digital Mathematics Library

In this article we define Musielak−Orlicz−Sobolev spaces on arbitrary metric spaces with finite diameter and equipped with finite, positive Borel regular outer measure. We employ a Hajlasz definition, which uses a pointwise maximal inequality. We prove that these spaces are Banach, that the Poincaré inequality holds, and that the Lipschitz functions are dense. We develop a capacity theory based on these spaces. We study basic properties of capacity and several convergence results. As an application, we prove that each Musielak−Orlicz−Sobolev function has a quasi-continuous representative.
Mots-clés : Metric measure space, Musielak−Orlicz−Sobolev spaces, capacity
@article{COMA_2016__56_2_292379,
     author = {Akdim Youssef and Noureddine Aissaoui and My Cherif Hassib},
     title = {Musielak\ensuremath{-}Orlicz\ensuremath{-}Sobolev spaces on arbitrary metrique space},
     journal = {Commentationes Mathematicae},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/COMA_2016__56_2_292379/}
}
TY  - JOUR
AU  - Akdim Youssef
AU  - Noureddine Aissaoui
AU  - My Cherif Hassib
TI  - Musielak−Orlicz−Sobolev spaces on arbitrary metrique space
JO  - Commentationes Mathematicae
PY  - 2016
VL  - 56
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/COMA_2016__56_2_292379/
LA  - en
ID  - COMA_2016__56_2_292379
ER  - 
%0 Journal Article
%A Akdim Youssef
%A Noureddine Aissaoui
%A My Cherif Hassib
%T Musielak−Orlicz−Sobolev spaces on arbitrary metrique space
%J Commentationes Mathematicae
%D 2016
%V 56
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/COMA_2016__56_2_292379/
%G en
%F COMA_2016__56_2_292379
Akdim Youssef; Noureddine Aissaoui; My Cherif Hassib. Musielak−Orlicz−Sobolev spaces on arbitrary metrique space. Commentationes Mathematicae, Tome 56 (2016) no. 2. https://geodesic-test.mathdoc.fr/item/COMA_2016__56_2_292379/