Musielak−Orlicz−Sobolev spaces on arbitrary metrique space
Commentationes Mathematicae, Tome 56 (2016) no. 2.
Voir la notice de l'article dans European Digital Mathematics Library
In this article we define Musielak−Orlicz−Sobolev spaces on arbitrary metric spaces with finite diameter and equipped with finite, positive Borel regular outer measure. We employ a Hajlasz definition, which uses a pointwise maximal inequality. We prove that these spaces are Banach, that the Poincaré inequality holds, and that the Lipschitz functions are dense. We develop a capacity theory based on these spaces. We study basic properties of capacity and several convergence results. As an application, we prove that each Musielak−Orlicz−Sobolev function has a quasi-continuous representative.
Mots-clés :
Metric measure space, Musielak−Orlicz−Sobolev spaces, capacity
@article{COMA_2016__56_2_292379, author = {Akdim Youssef and Noureddine Aissaoui and My Cherif Hassib}, title = {Musielak\ensuremath{-}Orlicz\ensuremath{-}Sobolev spaces on arbitrary metrique space}, journal = {Commentationes Mathematicae}, publisher = {mathdoc}, volume = {56}, number = {2}, year = {2016}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/COMA_2016__56_2_292379/} }
TY - JOUR AU - Akdim Youssef AU - Noureddine Aissaoui AU - My Cherif Hassib TI - Musielak−Orlicz−Sobolev spaces on arbitrary metrique space JO - Commentationes Mathematicae PY - 2016 VL - 56 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/COMA_2016__56_2_292379/ LA - en ID - COMA_2016__56_2_292379 ER -
Akdim Youssef; Noureddine Aissaoui; My Cherif Hassib. Musielak−Orlicz−Sobolev spaces on arbitrary metrique space. Commentationes Mathematicae, Tome 56 (2016) no. 2. https://geodesic-test.mathdoc.fr/item/COMA_2016__56_2_292379/