Series representation of compact linear operators in Banach spaces
Commentationes Mathematicae, Tome 56 (2016) no. 1.

Voir la notice de l'article dans European Digital Mathematics Library

Let p ∈ ( 1 , ∞ ) and I = ( 0 , 1 ) ; suppose that T : L p ( I ) → L p ( I ) is a compact linear map with trivial kernel and range dense in L p ( I ) . It is shown that if the Gelfand numbers of T decay sufficiently quickly, then the action of T is given by a series with calculable coefficients. The special properties of L p ( I ) enable this to be established under weaker conditions on the Gelfand numbers than in earlier work set in the context of more general spaces.
Mots-clés : Eigenvalues, Banach spaces, compact operators, nuclear maps, Gelfand numbers
@article{COMA_2016__56_1_292498,
     author = {David E. Edmunds and Jan Lang},
     title = {Series representation of compact linear operators in {Banach} spaces},
     journal = {Commentationes Mathematicae},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2016},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/COMA_2016__56_1_292498/}
}
TY  - JOUR
AU  - David E. Edmunds
AU  - Jan Lang
TI  - Series representation of compact linear operators in Banach spaces
JO  - Commentationes Mathematicae
PY  - 2016
VL  - 56
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/COMA_2016__56_1_292498/
LA  - en
ID  - COMA_2016__56_1_292498
ER  - 
%0 Journal Article
%A David E. Edmunds
%A Jan Lang
%T Series representation of compact linear operators in Banach spaces
%J Commentationes Mathematicae
%D 2016
%V 56
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/COMA_2016__56_1_292498/
%G en
%F COMA_2016__56_1_292498
David E. Edmunds; Jan Lang. Series representation of compact linear operators in Banach spaces. Commentationes Mathematicae, Tome 56 (2016) no. 1. https://geodesic-test.mathdoc.fr/item/COMA_2016__56_1_292498/