Some remarks on level functions and their applications
Commentationes Mathematicae, Tome 56 (2016) no. 1.
Voir la notice de l'article dans European Digital Mathematics Library
A comparison of the level functions considered by Halperin and Sinnamon is discussed. Moreover, connections between Lorentz-type spaces, down spaces, Cesàro spaces, and Sawyer's duality formula are explained. Applying Sinnamon's ideas, we prove the duality theorem for Orlicz−Lorentz spaces which generalizes a recent result by Kamińska, Leśnik, and Raynaud (and Nakamura). Finally, some applications of the level functions to the geometry of Orlicz−Lorentz spaces are presented.
Mots-clés :
level functions, dual spaces, Orlicz−Lorentz spaces, Halperin spaces, Cesàro spaces
@article{COMA_2016__56_1_292464, author = {Pawe{\l} Foralewski and Karol Le\'snik and Lech Maligranda}, title = {Some remarks on level functions and their applications}, journal = {Commentationes Mathematicae}, publisher = {mathdoc}, volume = {56}, number = {1}, year = {2016}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/COMA_2016__56_1_292464/} }
TY - JOUR AU - Paweł Foralewski AU - Karol Leśnik AU - Lech Maligranda TI - Some remarks on level functions and their applications JO - Commentationes Mathematicae PY - 2016 VL - 56 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/COMA_2016__56_1_292464/ LA - en ID - COMA_2016__56_1_292464 ER -
Paweł Foralewski; Karol Leśnik; Lech Maligranda. Some remarks on level functions and their applications. Commentationes Mathematicae, Tome 56 (2016) no. 1. https://geodesic-test.mathdoc.fr/item/COMA_2016__56_1_292464/