Liouville theorem with parameters: asymptotics of certain rational integrals in differential fields
Commentationes Mathematicae, Tome 50 (2010) no. 2.

Voir la notice de l'article dans European Digital Mathematics Library

We study asymptotics of integrals of certain rational functions that depend on parameters in a field K of characteristic zero. We use formal power series to represent the integral and prove certain identities about coefficients of this series following from the generalized Vandermonde determinant expansion. Our result can be viewed as a parametric version of a classical theorem of Liouville. We also give some applications.
Mots-clés : integrals of rational functions, Vandermonde determinant, differential fields, Liouville theorem
@article{COMA_2010__50_2_291812,
     author = {Ma{\l}gorzata Stawiska},
     title = {Liouville theorem with parameters: asymptotics of certain rational integrals in differential fields},
     journal = {Commentationes Mathematicae},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/COMA_2010__50_2_291812/}
}
TY  - JOUR
AU  - Małgorzata Stawiska
TI  - Liouville theorem with parameters: asymptotics of certain rational integrals in differential fields
JO  - Commentationes Mathematicae
PY  - 2010
VL  - 50
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/COMA_2010__50_2_291812/
LA  - en
ID  - COMA_2010__50_2_291812
ER  - 
%0 Journal Article
%A Małgorzata Stawiska
%T Liouville theorem with parameters: asymptotics of certain rational integrals in differential fields
%J Commentationes Mathematicae
%D 2010
%V 50
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/COMA_2010__50_2_291812/
%G en
%F COMA_2010__50_2_291812
Małgorzata Stawiska. Liouville theorem with parameters: asymptotics of certain rational integrals in differential fields. Commentationes Mathematicae, Tome 50 (2010) no. 2. https://geodesic-test.mathdoc.fr/item/COMA_2010__50_2_291812/