Baire measurable solutions of a generalized Gołąb–Schinzel equation
Commentationes Mathematicae, Tome 50 (2010) no. 1.

Voir la notice de l'article dans European Digital Mathematics Library

J. Brzdęk [1] characterized Baire measurable solutions f : X → K of the functional equation f ( x + f ( x ) n y ) = f ( x ) f ( y ) under the assumption that X is a Fréchet space over the field K of real or complex numbers and n is a positive integer. We prove that his result holds even if X is a linear topological space over K ; i.e. completeness and metrizability are not necessary.
Mots-clés : generalized Gołąb–Schinzel equation, net, finer net, Baire measurability
@article{COMA_2010__50_1_292140,
     author = {Eliza Jab{\l}o\'nska},
     title = {Baire measurable solutions of a generalized {Go{\l}\k{a}b{\textendash}Schinzel} equation},
     journal = {Commentationes Mathematicae},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/COMA_2010__50_1_292140/}
}
TY  - JOUR
AU  - Eliza Jabłońska
TI  - Baire measurable solutions of a generalized Gołąb–Schinzel equation
JO  - Commentationes Mathematicae
PY  - 2010
VL  - 50
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/COMA_2010__50_1_292140/
LA  - en
ID  - COMA_2010__50_1_292140
ER  - 
%0 Journal Article
%A Eliza Jabłońska
%T Baire measurable solutions of a generalized Gołąb–Schinzel equation
%J Commentationes Mathematicae
%D 2010
%V 50
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/COMA_2010__50_1_292140/
%G en
%F COMA_2010__50_1_292140
Eliza Jabłońska. Baire measurable solutions of a generalized Gołąb–Schinzel equation. Commentationes Mathematicae, Tome 50 (2010) no. 1. https://geodesic-test.mathdoc.fr/item/COMA_2010__50_1_292140/