Baire measurable solutions of a generalized Gołąb–Schinzel equation
Commentationes Mathematicae, Tome 50 (2010) no. 1.
Voir la notice de l'article dans European Digital Mathematics Library
J. Brzdęk [1] characterized Baire measurable solutions
f
:
X
→
K
of the functional equation
f
(
x
+
f
(
x
)
n
y
)
=
f
(
x
)
f
(
y
)
under the assumption that
X
is a Fréchet space over the field
K
of real or complex numbers and
n
is a positive integer. We prove that his result holds even if
X
is a linear topological space over
K
; i.e. completeness and metrizability are not necessary.
Mots-clés :
generalized Gołąb–Schinzel equation, net, finer net, Baire measurability
@article{COMA_2010__50_1_292140, author = {Eliza Jab{\l}o\'nska}, title = {Baire measurable solutions of a generalized {Go{\l}\k{a}b{\textendash}Schinzel} equation}, journal = {Commentationes Mathematicae}, publisher = {mathdoc}, volume = {50}, number = {1}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/COMA_2010__50_1_292140/} }
Eliza Jabłońska. Baire measurable solutions of a generalized Gołąb–Schinzel equation. Commentationes Mathematicae, Tome 50 (2010) no. 1. https://geodesic-test.mathdoc.fr/item/COMA_2010__50_1_292140/