A generalization of the Schauder fixed point theorem via multivalued contractions
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 637-640.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We establish a fixed point theorem for a continuous function f:XE, where E is a Banach space and XE. Our result, which involves multivalued contractions, contains the classical Schauder fixed point theorem as a special case. An application is presented.
Classification : 47H04, 47H10
Mots-clés : fixed points; multivalued contractions; absolute retracts
@article{CMUC_2001__42_4_a3,
     author = {Cubiotti, Paolo and Di Bella, Beatrice},
     title = {A generalization of the {Schauder} fixed point theorem via multivalued contractions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {637--640},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2001},
     mrnumber = {1883372},
     zbl = {1068.47070},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMUC_2001__42_4_a3/}
}
TY  - JOUR
AU  - Cubiotti, Paolo
AU  - Di Bella, Beatrice
TI  - A generalization of the Schauder fixed point theorem via multivalued contractions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 637
EP  - 640
VL  - 42
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMUC_2001__42_4_a3/
LA  - en
ID  - CMUC_2001__42_4_a3
ER  - 
%0 Journal Article
%A Cubiotti, Paolo
%A Di Bella, Beatrice
%T A generalization of the Schauder fixed point theorem via multivalued contractions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 637-640
%V 42
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMUC_2001__42_4_a3/
%G en
%F CMUC_2001__42_4_a3
Cubiotti, Paolo; Di Bella, Beatrice. A generalization of the Schauder fixed point theorem via multivalued contractions. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 637-640. https://geodesic-test.mathdoc.fr/item/CMUC_2001__42_4_a3/