Pasting topological spaces at one point
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1193-1206.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $\lbrace X_\alpha \rbrace _{\alpha \in \Lambda }$ be a family of topological spaces and $x_{\alpha }\in X_{\alpha }$, for every $\alpha \in \Lambda $. Suppose $X$ is the quotient space of the disjoint union of $X_\alpha $’s by identifying $x_\alpha $’s as one point $\sigma $. We try to characterize ideals of $C(X)$ according to the same ideals of $C(X_\alpha )$’s. In addition we generalize the concept of rank of a point, see [9], and then answer the following two algebraic questions. Let $m$ be an infinite cardinal. (1) Is there any ring $R$ and $I$ an ideal in $R$ such that $I$ is an irreducible intersection of $m$ prime ideals? (2) Is there any set of prime ideals of cardinality $m$ in a ring $R$ such that the intersection of these prime ideals can not be obtained as an intersection of fewer than $m$ prime ideals in $R$? Finally, we answer an open question in [11].
Classification : 54B15, 54C40, 54C45, 54G05, 54G10
Mots-clés : pasting topological spaces at one point; rings of continuous (bounded) real functions on $X$; $z$-ideal; $z^\circ $-ideal; $C$-embedded; $P$-space; $F$-space.
@article{CMJ_2006__56_4_a8,
     author = {Aliabad, Ali Rezaei},
     title = {Pasting topological spaces at one point},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1193--1206},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2006},
     mrnumber = {2280803},
     zbl = {1164.54338},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a8/}
}
TY  - JOUR
AU  - Aliabad, Ali Rezaei
TI  - Pasting topological spaces at one point
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 1193
EP  - 1206
VL  - 56
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a8/
LA  - en
ID  - CMJ_2006__56_4_a8
ER  - 
%0 Journal Article
%A Aliabad, Ali Rezaei
%T Pasting topological spaces at one point
%J Czechoslovak Mathematical Journal
%D 2006
%P 1193-1206
%V 56
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a8/
%G en
%F CMJ_2006__56_4_a8
Aliabad, Ali Rezaei. Pasting topological spaces at one point. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1193-1206. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a8/