A note on the diophantine equation $x^2+b^Y=c^z$
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1109-1116.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $a$, $b$, $c$, $r$ be positive integers such that $a^{2}+b^{2}=c^{r}$, $\min (a,b,c,r)>1$, $\gcd (a,b)=1, a$ is even and $r$ is odd. In this paper we prove that if $b\equiv 3\hspace{4.44443pt}(\@mod \; 4)$ and either $b$ or $c$ is an odd prime power, then the equation $x^{2}+b^{y}=c^{z}$ has only the positive integer solution $(x,y,z)=(a,2,r)$ with $\min (y,z)>1$.
Classification :
11D61
Mots-clés : exponential diophantine equation; Lucas number; positive divisor
Mots-clés : exponential diophantine equation; Lucas number; positive divisor
@article{CMJ_2006__56_4_a2, author = {Le, Maohua}, title = {A note on the diophantine equation $x^2+b^Y=c^z$}, journal = {Czechoslovak Mathematical Journal}, pages = {1109--1116}, publisher = {mathdoc}, volume = {56}, number = {4}, year = {2006}, mrnumber = {2280797}, zbl = {1164.11319}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a2/} }
Le, Maohua. A note on the diophantine equation $x^2+b^Y=c^z$. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1109-1116. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a2/