A note on the diophantine equation $x^2+b^Y=c^z$
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1109-1116.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $a$, $b$, $c$, $r$ be positive integers such that $a^{2}+b^{2}=c^{r}$, $\min (a,b,c,r)>1$, $\gcd (a,b)=1, a$ is even and $r$ is odd. In this paper we prove that if $b\equiv 3\hspace{4.44443pt}(\@mod \; 4)$ and either $b$ or $c$ is an odd prime power, then the equation $x^{2}+b^{y}=c^{z}$ has only the positive integer solution $(x,y,z)=(a,2,r)$ with $\min (y,z)>1$.
Classification : 11D61
Mots-clés : exponential diophantine equation; Lucas number; positive divisor
@article{CMJ_2006__56_4_a2,
     author = {Le, Maohua},
     title = {A note on the diophantine equation $x^2+b^Y=c^z$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1109--1116},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2006},
     mrnumber = {2280797},
     zbl = {1164.11319},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a2/}
}
TY  - JOUR
AU  - Le, Maohua
TI  - A note on the diophantine equation $x^2+b^Y=c^z$
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 1109
EP  - 1116
VL  - 56
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a2/
LA  - en
ID  - CMJ_2006__56_4_a2
ER  - 
%0 Journal Article
%A Le, Maohua
%T A note on the diophantine equation $x^2+b^Y=c^z$
%J Czechoslovak Mathematical Journal
%D 2006
%P 1109-1116
%V 56
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a2/
%G en
%F CMJ_2006__56_4_a2
Le, Maohua. A note on the diophantine equation $x^2+b^Y=c^z$. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1109-1116. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a2/