Clifford-Hermite-monogenic operators
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1301-1322.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this paper we consider operators acting on a subspace $\mathcal M$ of the space $L_2(\mathbb{R}^m;\mathbb{C}_m)$ of square integrable functions and, in particular, Clifford differential operators with polynomial coefficients. The subspace ${\mathcal M}$ is defined as the orthogonal sum of spaces ${\mathcal M}_{s,k}$ of specific Clifford basis functions of $L_2(\mathbb{R}^m;\mathbb{C}_m)$. Every Clifford endomorphism of ${\mathcal M}$ can be decomposed into the so-called Clifford-Hermite-monogenic operators. These Clifford-Hermite-monogenic operators are characterized in terms of commutation relations and they transform a space ${\mathcal M}_{s,k}$ into a similar space ${\mathcal M}_{s^{\prime }\!,k^{\prime }}$. Hence, once the Clifford-Hermite-monogenic decomposition of an operator is obtained, its action on the space ${\mathcal M}$ is known. Furthermore, the monogenic decomposition of some important Clifford differential operators with polynomial coefficients is studied in detail.
@article{CMJ_2006__56_4_a15, author = {Brackx, Fred and de Schepper, Nele and Sommen, Frank}, title = {Clifford-Hermite-monogenic operators}, journal = {Czechoslovak Mathematical Journal}, pages = {1301--1322}, publisher = {mathdoc}, volume = {56}, number = {4}, year = {2006}, mrnumber = {2280810}, zbl = {1164.47336}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a15/} }
TY - JOUR AU - Brackx, Fred AU - de Schepper, Nele AU - Sommen, Frank TI - Clifford-Hermite-monogenic operators JO - Czechoslovak Mathematical Journal PY - 2006 SP - 1301 EP - 1322 VL - 56 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a15/ LA - en ID - CMJ_2006__56_4_a15 ER -
Brackx, Fred; de Schepper, Nele; Sommen, Frank. Clifford-Hermite-monogenic operators. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1301-1322. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a15/