Nodal solutions for a second-order $m$-point boundary value problem
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1243-1263.
Voir la notice de l'article dans Czech Digital Mathematics Library
We study the existence of nodal solutions of the $m$-point boundary value problem \[ u^{\prime \prime }+ f(u)=0, \quad 01, u^{\prime }(0)=0, \quad u(1)=\sum ^{m-2}_{i=1} \alpha _i u(\eta _i) \] where $\eta _i\in \mathbb{Q}$ $(i=1, 2, \cdots , m-2)$ with $0\eta _1\eta _2\cdots \eta _{m-2}1$, and $\alpha _i\in \mathbb{R}$ $(i=1, 2, \cdots , m-2)$ with $\alpha _i>0$ and $0\sum \nolimits ^{m-2}_{i=1} \alpha _i 1$. We give conditions on the ratio $f(s)/s$ at infinity and zero that guarantee the existence of nodal solutions. The proofs of the main results are based on bifurcation techniques.
Classification :
34B10, 34C23, 34G20, 34L20, 47J15, 47N20
Mots-clés : multiplicity results; eigenvalues; bifurcation methods; nodal zeros; multi-point boundary value problems
Mots-clés : multiplicity results; eigenvalues; bifurcation methods; nodal zeros; multi-point boundary value problems
@article{CMJ_2006__56_4_a12, author = {Ma, Ruyun}, title = {Nodal solutions for a second-order $m$-point boundary value problem}, journal = {Czechoslovak Mathematical Journal}, pages = {1243--1263}, publisher = {mathdoc}, volume = {56}, number = {4}, year = {2006}, mrnumber = {2280807}, zbl = {1164.34329}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a12/} }
Ma, Ruyun. Nodal solutions for a second-order $m$-point boundary value problem. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1243-1263. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a12/