Weak homogeneity and Pierce’s theorem for $MV$-algebras
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1215-1227.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this paper we prove a theorem on weak homogeneity of $MV$-algebras which generalizes a known result on weak homogeneity of Boolean algebras. Further, we consider a homogeneity condition for $MV$-algebras which is defined by means of an increasing cardinal property.
Classification :
06D35
Mots-clés : $MV$-algebra; weak homogeneity; internal direct product decomposition
Mots-clés : $MV$-algebra; weak homogeneity; internal direct product decomposition
@article{CMJ_2006__56_4_a10, author = {Jakub{\'\i}k, J\'an}, title = {Weak homogeneity and {Pierce{\textquoteright}s} theorem for $MV$-algebras}, journal = {Czechoslovak Mathematical Journal}, pages = {1215--1227}, publisher = {mathdoc}, volume = {56}, number = {4}, year = {2006}, mrnumber = {2280805}, zbl = {1164.06315}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a10/} }
Jakubík, Ján. Weak homogeneity and Pierce’s theorem for $MV$-algebras. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1215-1227. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a10/