Weak homogeneity and Pierce’s theorem for $MV$-algebras
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1215-1227.

Voir la notice de l'article dans Czech Digital Mathematics Library

In this paper we prove a theorem on weak homogeneity of $MV$-algebras which generalizes a known result on weak homogeneity of Boolean algebras. Further, we consider a homogeneity condition for $MV$-algebras which is defined by means of an increasing cardinal property.
Classification : 06D35
Mots-clés : $MV$-algebra; weak homogeneity; internal direct product decomposition
@article{CMJ_2006__56_4_a10,
     author = {Jakub{\'\i}k, J\'an},
     title = {Weak homogeneity and {Pierce{\textquoteright}s} theorem for $MV$-algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1215--1227},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2006},
     mrnumber = {2280805},
     zbl = {1164.06315},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a10/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Weak homogeneity and Pierce’s theorem for $MV$-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 1215
EP  - 1227
VL  - 56
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a10/
LA  - en
ID  - CMJ_2006__56_4_a10
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Weak homogeneity and Pierce’s theorem for $MV$-algebras
%J Czechoslovak Mathematical Journal
%D 2006
%P 1215-1227
%V 56
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a10/
%G en
%F CMJ_2006__56_4_a10
Jakubík, Ján. Weak homogeneity and Pierce’s theorem for $MV$-algebras. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1215-1227. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_4_a10/