Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 903-918.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $A$ be a uniformly closed and locally m-convex $\Phi $-algebra. We obtain internal conditions on $A$ stated in terms of its closed ideals for $A$ to be isomorphic and homeomorphic to $C_k(X)$, the $\Phi $-algebra of all the real continuous functions on a normal topological space $X$ endowed with the compact convergence topology.
Classification :
06B30, 46H05, 46H15, 54H12, 54H13
Mots-clés : locally m-convex algebra; $\Phi $-algebra; compact convergence topology
Mots-clés : locally m-convex algebra; $\Phi $-algebra; compact convergence topology
@article{CMJ_2006__56_3_a8, author = {Montalvo, F. and Pulgar{\'\i}n, A. A. and Requejo, B.}, title = {Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$}, journal = {Czechoslovak Mathematical Journal}, pages = {903--918}, publisher = {mathdoc}, volume = {56}, number = {3}, year = {2006}, mrnumber = {2261662}, zbl = {1164.46339}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a8/} }
TY - JOUR AU - Montalvo, F. AU - Pulgarín, A. A. AU - Requejo, B. TI - Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$ JO - Czechoslovak Mathematical Journal PY - 2006 SP - 903 EP - 918 VL - 56 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a8/ LA - en ID - CMJ_2006__56_3_a8 ER -
%0 Journal Article %A Montalvo, F. %A Pulgarín, A. A. %A Requejo, B. %T Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$ %J Czechoslovak Mathematical Journal %D 2006 %P 903-918 %V 56 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a8/ %G en %F CMJ_2006__56_3_a8
Montalvo, F.; Pulgarín, A. A.; Requejo, B. Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 903-918. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a8/