Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 903-918.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $A$ be a uniformly closed and locally m-convex $\Phi $-algebra. We obtain internal conditions on $A$ stated in terms of its closed ideals for $A$ to be isomorphic and homeomorphic to $C_k(X)$, the $\Phi $-algebra of all the real continuous functions on a normal topological space $X$ endowed with the compact convergence topology.
Classification : 06B30, 46H05, 46H15, 54H12, 54H13
Mots-clés : locally m-convex algebra; $\Phi $-algebra; compact convergence topology
@article{CMJ_2006__56_3_a8,
     author = {Montalvo, F. and Pulgar{\'\i}n, A. A. and Requejo, B.},
     title = {Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {903--918},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2006},
     mrnumber = {2261662},
     zbl = {1164.46339},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a8/}
}
TY  - JOUR
AU  - Montalvo, F.
AU  - Pulgarín, A. A.
AU  - Requejo, B.
TI  - Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 903
EP  - 918
VL  - 56
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a8/
LA  - en
ID  - CMJ_2006__56_3_a8
ER  - 
%0 Journal Article
%A Montalvo, F.
%A Pulgarín, A. A.
%A Requejo, B.
%T Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$
%J Czechoslovak Mathematical Journal
%D 2006
%P 903-918
%V 56
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a8/
%G en
%F CMJ_2006__56_3_a8
Montalvo, F.; Pulgarín, A. A.; Requejo, B. Closed ideals in topological algebras: a characterization of the topological $\Phi$-algebra $C_k(X)$. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 903-918. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a8/