An upper bound for domination number of 5-regular graphs
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 1049-1061.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $G=(V, E)$ be a simple graph. A subset $S\subseteq V$ is a dominating set of $G$, if for any vertex $u\in V-S$, there exists a vertex $v\in S$ such that $uv\in E$. The domination number, denoted by $\gamma (G)$, is the minimum cardinality of a dominating set. In this paper we will prove that if $G$ is a 5-regular graph, then $\gamma (G)\le {5\over 14}n$.
Classification : 05C69
Mots-clés : domination number; 5-regular graph; upper bounds
@article{CMJ_2006__56_3_a22,
     author = {Xing, Hua-Ming and Sun, Liang and Chen, Xue-Gang},
     title = {An upper bound for domination number of 5-regular graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1049--1061},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2006},
     mrnumber = {2261676},
     zbl = {1164.05425},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a22/}
}
TY  - JOUR
AU  - Xing, Hua-Ming
AU  - Sun, Liang
AU  - Chen, Xue-Gang
TI  - An upper bound for domination number of 5-regular graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 1049
EP  - 1061
VL  - 56
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a22/
LA  - en
ID  - CMJ_2006__56_3_a22
ER  - 
%0 Journal Article
%A Xing, Hua-Ming
%A Sun, Liang
%A Chen, Xue-Gang
%T An upper bound for domination number of 5-regular graphs
%J Czechoslovak Mathematical Journal
%D 2006
%P 1049-1061
%V 56
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a22/
%G en
%F CMJ_2006__56_3_a22
Xing, Hua-Ming; Sun, Liang; Chen, Xue-Gang. An upper bound for domination number of 5-regular graphs. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 1049-1061. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a22/