On complemented subgroups of finite groups
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 1019-1028.
Voir la notice de l'article dans Czech Digital Mathematics Library
A subgroup $H$ of a group $G$ is said to be complemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K=1$. In this paper we determine the structure of finite groups with some complemented primary subgroups, and obtain some new results about $p$-nilpotent groups.
Classification :
20D10, 20D15, 20D20, 20D40
Mots-clés : finite group; $p$-nilpotent group; primary subgroups; complemented subgroups
Mots-clés : finite group; $p$-nilpotent group; primary subgroups; complemented subgroups
@article{CMJ_2006__56_3_a20, author = {Miao, Long}, title = {On complemented subgroups of finite groups}, journal = {Czechoslovak Mathematical Journal}, pages = {1019--1028}, publisher = {mathdoc}, volume = {56}, number = {3}, year = {2006}, mrnumber = {2261674}, zbl = {1157.20323}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a20/} }
Miao, Long. On complemented subgroups of finite groups. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 1019-1028. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a20/