On weak-open $\pi$-images of metric spaces
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 1011-1018.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this paper, we give some characterizations of metric spaces under weak-open $\pi$-mappings, which prove that a space is $g$-developable (or Cauchy) if and only if it is a weak-open $\pi$-image of a metric space.
Classification :
54C10, 54D55, 54E40, 54E99
Mots-clés : weak-open mappings; $\pi$-mappings; $g$-developable spaces; Cauchy spaces; cs-covers; sn-covers; weak-developments; point-star networks
Mots-clés : weak-open mappings; $\pi$-mappings; $g$-developable spaces; Cauchy spaces; cs-covers; sn-covers; weak-developments; point-star networks
@article{CMJ_2006__56_3_a19, author = {Li, Zhaowen}, title = {On weak-open $\pi$-images of metric spaces}, journal = {Czechoslovak Mathematical Journal}, pages = {1011--1018}, publisher = {mathdoc}, volume = {56}, number = {3}, year = {2006}, mrnumber = {2261673}, zbl = {1164.54365}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a19/} }
Li, Zhaowen. On weak-open $\pi$-images of metric spaces. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 1011-1018. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a19/