On the classes of hereditarily p Banach spaces
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 1001-1009.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let X denote a specific space of the class of Xα,p Banach sequence spaces which were constructed by Hagler and the first named author as classes of hereditarily p Banach spaces. We show that for p>1 the Banach space X contains asymptotically isometric copies of p. It is known that any member of the class is a dual space. We show that the predual of X contains isometric copies of q where 1p+1q=1. For p=1 it is known that the predual of the Banach space X contains asymptotically isometric copies of c0. Here we give a direct proof of the known result that X contains asymptotically isometric copies of 1.
Classification : 46B04, 46B20, 46B25
Mots-clés : Banach spaces; asymptotically isometric copy of p; hereditarily p Banach spaces
@article{CMJ_2006__56_3_a18,
     author = {Azimi, P. and Ledari, A. A.},
     title = {On the classes of hereditarily $\ell_p$ {Banach} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1001--1009},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2006},
     mrnumber = {2261672},
     zbl = {1164.46304},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a18/}
}
TY  - JOUR
AU  - Azimi, P.
AU  - Ledari, A. A.
TI  - On the classes of hereditarily $\ell_p$ Banach spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 1001
EP  - 1009
VL  - 56
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a18/
LA  - en
ID  - CMJ_2006__56_3_a18
ER  - 
%0 Journal Article
%A Azimi, P.
%A Ledari, A. A.
%T On the classes of hereditarily $\ell_p$ Banach spaces
%J Czechoslovak Mathematical Journal
%D 2006
%P 1001-1009
%V 56
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a18/
%G en
%F CMJ_2006__56_3_a18
Azimi, P.; Ledari, A. A. On the classes of hereditarily $\ell_p$ Banach spaces. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 1001-1009. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a18/