A simple method for constructing non-liouvillian first integrals of autonomous planar systems
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 987-999.

Voir la notice de l'article dans Czech Digital Mathematics Library

We show that a transformation method relating planar first-order differential systems to second order equations is an effective tool for finding non-liouvillian first integrals. We obtain explicit first integrals for a subclass of Kukles systems, including fourth and fifth order systems, and for generalized Liénard-type systems.
Classification : 33C99, 34A25, 34C07, 34C14, 81U15
Mots-clés : planar polynomial systems; Kukles systems; generalized Liénard systems; non-liouvillian first integrals
@article{CMJ_2006__56_3_a17,
     author = {Schulze-Halberg, Axel},
     title = {A simple method for constructing non-liouvillian first integrals of autonomous planar systems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {987--999},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2006},
     mrnumber = {2261671},
     zbl = {1164.34396},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a17/}
}
TY  - JOUR
AU  - Schulze-Halberg, Axel
TI  - A simple method for constructing non-liouvillian first integrals of autonomous planar systems
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 987
EP  - 999
VL  - 56
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a17/
LA  - en
ID  - CMJ_2006__56_3_a17
ER  - 
%0 Journal Article
%A Schulze-Halberg, Axel
%T A simple method for constructing non-liouvillian first integrals of autonomous planar systems
%J Czechoslovak Mathematical Journal
%D 2006
%P 987-999
%V 56
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a17/
%G en
%F CMJ_2006__56_3_a17
Schulze-Halberg, Axel. A simple method for constructing non-liouvillian first integrals of autonomous planar systems. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 987-999. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a17/