A simple method for constructing non-liouvillian first integrals of autonomous planar systems
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 987-999.
Voir la notice de l'article dans Czech Digital Mathematics Library
We show that a transformation method relating planar first-order differential systems to second order equations is an effective tool for finding non-liouvillian first integrals. We obtain explicit first integrals for a subclass of Kukles systems, including fourth and fifth order systems, and for generalized Liénard-type systems.
Classification :
33C99, 34A25, 34C07, 34C14, 81U15
Mots-clés : planar polynomial systems; Kukles systems; generalized Liénard systems; non-liouvillian first integrals
Mots-clés : planar polynomial systems; Kukles systems; generalized Liénard systems; non-liouvillian first integrals
@article{CMJ_2006__56_3_a17, author = {Schulze-Halberg, Axel}, title = {A simple method for constructing non-liouvillian first integrals of autonomous planar systems}, journal = {Czechoslovak Mathematical Journal}, pages = {987--999}, publisher = {mathdoc}, volume = {56}, number = {3}, year = {2006}, mrnumber = {2261671}, zbl = {1164.34396}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a17/} }
TY - JOUR AU - Schulze-Halberg, Axel TI - A simple method for constructing non-liouvillian first integrals of autonomous planar systems JO - Czechoslovak Mathematical Journal PY - 2006 SP - 987 EP - 999 VL - 56 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a17/ LA - en ID - CMJ_2006__56_3_a17 ER -
%0 Journal Article %A Schulze-Halberg, Axel %T A simple method for constructing non-liouvillian first integrals of autonomous planar systems %J Czechoslovak Mathematical Journal %D 2006 %P 987-999 %V 56 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a17/ %G en %F CMJ_2006__56_3_a17
Schulze-Halberg, Axel. A simple method for constructing non-liouvillian first integrals of autonomous planar systems. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 987-999. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a17/