$\pm$ sign pattern matrices that allow orthogonality
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 969-979.
Voir la notice de l'article dans Czech Digital Mathematics Library
A sign pattern $A$ is a $\pm $ sign pattern if $A$ has no zero entries. $A$ allows orthogonality if there exists a real orthogonal matrix $B$ whose sign pattern equals $A$. Some sufficient conditions are given for a sign pattern matrix to allow orthogonality, and a complete characterization is given for $\pm $ sign patterns with $n-1 \le N_-(A) \le n+1$ to allow orthogonality.
Classification :
15A18, 15A36, 15A48, 15A99
Mots-clés : sign pattern; orthogonality; orthogonal matrix
Mots-clés : sign pattern; orthogonality; orthogonal matrix
@article{CMJ_2006__56_3_a15, author = {Shao, Yanling and Sun, Liang and Gao, Yubin}, title = {$\pm$ sign pattern matrices that allow orthogonality}, journal = {Czechoslovak Mathematical Journal}, pages = {969--979}, publisher = {mathdoc}, volume = {56}, number = {3}, year = {2006}, mrnumber = {2261669}, zbl = {1164.15327}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a15/} }
TY - JOUR AU - Shao, Yanling AU - Sun, Liang AU - Gao, Yubin TI - $\pm$ sign pattern matrices that allow orthogonality JO - Czechoslovak Mathematical Journal PY - 2006 SP - 969 EP - 979 VL - 56 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a15/ LA - en ID - CMJ_2006__56_3_a15 ER -
Shao, Yanling; Sun, Liang; Gao, Yubin. $\pm$ sign pattern matrices that allow orthogonality. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 969-979. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a15/