Star number and star arboricity of a complete multigraph
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 961-967.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $G$ be a multigraph. The star number ${\mathrm s}(G)$ of $G$ is the minimum number of stars needed to decompose the edges of $G$. The star arboricity ${\mathrm sa}(G)$ of $G$ is the minimum number of star forests needed to decompose the edges of $G$. As usual $\lambda K_n$ denote the $\lambda $-fold complete graph on $n$ vertices (i.e., the multigraph on $n$ vertices such that there are $\lambda $ edges between every pair of vertices). In this paper, we prove that for $n \ge 2$ \[ \begin{aligned} {\mathrm s}(\lambda K_n)= \left\rbrace \begin{array}{ll}\frac{1}{2}\lambda n\text{if}\ \lambda \ \text{is even}, \frac{1}{2}(\lambda +1)n-1\text{if}\ \lambda \ \text{is odd,} \end{array}\right. {\vspace{2.0pt}} {\mathrm sa}(\lambda K_n)= \left\rbrace \begin{array}{ll}\lceil \frac{1}{2}\lambda n \rceil \text{if}\ \lambda \ \text{is odd},\ n = 2, 3 \ \text{or}\ \lambda \ \text{is even}, \lceil \frac{1}{2}\lambda n \rceil +1 \text{if}\ \lambda \ \text{is odd},\ n\ge 4. \end{array}\right. \end{aligned} \qquad \mathrm{(1,2)}\]
Classification : 05C70
Mots-clés : decomposition; star arboricity; star forest; complete multigraph
@article{CMJ_2006__56_3_a14,
     author = {Lin, Chiang and Shyu, Tay-Woei},
     title = {Star number and star arboricity of a complete multigraph},
     journal = {Czechoslovak Mathematical Journal},
     pages = {961--967},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2006},
     mrnumber = {2261668},
     zbl = {1164.05433},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a14/}
}
TY  - JOUR
AU  - Lin, Chiang
AU  - Shyu, Tay-Woei
TI  - Star number and star arboricity of a complete multigraph
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 961
EP  - 967
VL  - 56
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a14/
LA  - en
ID  - CMJ_2006__56_3_a14
ER  - 
%0 Journal Article
%A Lin, Chiang
%A Shyu, Tay-Woei
%T Star number and star arboricity of a complete multigraph
%J Czechoslovak Mathematical Journal
%D 2006
%P 961-967
%V 56
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a14/
%G en
%F CMJ_2006__56_3_a14
Lin, Chiang; Shyu, Tay-Woei. Star number and star arboricity of a complete multigraph. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 961-967. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_3_a14/