On monotone permutations of $\ell$-cyclically ordered sets
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 403-415.
Voir la notice de l'article dans Czech Digital Mathematics Library
For an $\ell $-cyclically ordered set $M$ with the $\ell $-cyclic order $C$ let $P(M)$ be the set of all monotone permutations on $M$. We define a ternary relation $\overline{C}$ on the set $P(M)$. Further, we define in a natural way a group operation (denoted by $\cdot $) on $P(M)$. We prove that if the $\ell $-cyclic order $C$ is complete and $\overline{C}\ne \emptyset $, then $(P(M), \cdot ,\overline{C})$ is a half cyclically ordered group.
Classification :
06F15
Mots-clés : $\ell $-cyclically ordered set; completeness; monotone permutation; half cyclically ordered group
Mots-clés : $\ell $-cyclically ordered set; completeness; monotone permutation; half cyclically ordered group
@article{CMJ_2006__56_2_a9, author = {Jakub{\'\i}k, J\'an}, title = {On monotone permutations of $\ell$-cyclically ordered sets}, journal = {Czechoslovak Mathematical Journal}, pages = {403--415}, publisher = {mathdoc}, volume = {56}, number = {2}, year = {2006}, mrnumber = {2291745}, zbl = {1164.06327}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a9/} }
Jakubík, Ján. On monotone permutations of $\ell$-cyclically ordered sets. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 403-415. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a9/