Regular submodules of torsion modules over a discrete valuation domain
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 349-357.
Voir la notice de l'article dans Czech Digital Mathematics Library
A submodule $W$ of a $p$-primary module $M$ of bounded order is known to be regular if $W$ and $M$ have simultaneous bases. In this paper we derive necessary and sufficient conditions for regularity of a submodule.
Classification :
13C12, 20K10, 20K25
Mots-clés : regular submodules; modules over discrete valuation domains; Abelian $p$-groups; simultaneous bases
Mots-clés : regular submodules; modules over discrete valuation domains; Abelian $p$-groups; simultaneous bases
@article{CMJ_2006__56_2_a5, author = {Astuti, Pudji and Wimmer, Harald K.}, title = {Regular submodules of torsion modules over a discrete valuation domain}, journal = {Czechoslovak Mathematical Journal}, pages = {349--357}, publisher = {mathdoc}, volume = {56}, number = {2}, year = {2006}, mrnumber = {2291741}, zbl = {1155.13304}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a5/} }
TY - JOUR AU - Astuti, Pudji AU - Wimmer, Harald K. TI - Regular submodules of torsion modules over a discrete valuation domain JO - Czechoslovak Mathematical Journal PY - 2006 SP - 349 EP - 357 VL - 56 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a5/ LA - en ID - CMJ_2006__56_2_a5 ER -
Astuti, Pudji; Wimmer, Harald K. Regular submodules of torsion modules over a discrete valuation domain. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 349-357. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a5/