Regular submodules of torsion modules over a discrete valuation domain
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 349-357.

Voir la notice de l'article dans Czech Digital Mathematics Library

A submodule $W$ of a $p$-primary module $M$ of bounded order is known to be regular if $W$ and $M$ have simultaneous bases. In this paper we derive necessary and sufficient conditions for regularity of a submodule.
Classification : 13C12, 20K10, 20K25
Mots-clés : regular submodules; modules over discrete valuation domains; Abelian $p$-groups; simultaneous bases
@article{CMJ_2006__56_2_a5,
     author = {Astuti, Pudji and Wimmer, Harald K.},
     title = {Regular submodules of torsion modules over a discrete valuation domain},
     journal = {Czechoslovak Mathematical Journal},
     pages = {349--357},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2006},
     mrnumber = {2291741},
     zbl = {1155.13304},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a5/}
}
TY  - JOUR
AU  - Astuti, Pudji
AU  - Wimmer, Harald K.
TI  - Regular submodules of torsion modules over a discrete valuation domain
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 349
EP  - 357
VL  - 56
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a5/
LA  - en
ID  - CMJ_2006__56_2_a5
ER  - 
%0 Journal Article
%A Astuti, Pudji
%A Wimmer, Harald K.
%T Regular submodules of torsion modules over a discrete valuation domain
%J Czechoslovak Mathematical Journal
%D 2006
%P 349-357
%V 56
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a5/
%G en
%F CMJ_2006__56_2_a5
Astuti, Pudji; Wimmer, Harald K. Regular submodules of torsion modules over a discrete valuation domain. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 349-357. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a5/