On $\scr L$-starcompact spaces
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 781-788.
Voir la notice de l'article dans Czech Digital Mathematics Library
A space $X$ is $\mathcal L$-starcompact if for every open cover $\mathcal U$ of $X,$ there exists a Lindelöf subset $L$ of $X$ such that $\mathop {\mathrm St}(L,{\mathcal U})=X.$ We clarify the relations between ${\mathcal L}$-starcompact spaces and other related spaces and investigate topological properties of ${\mathcal L}$-starcompact spaces. A question of Hiremath is answered.
Classification :
54B10, 54D20, 54D55
Mots-clés : Lindelöf; star-Lindelöf and ${\mathcal L}$-starcompact
Mots-clés : Lindelöf; star-Lindelöf and ${\mathcal L}$-starcompact
@article{CMJ_2006__56_2_a39, author = {Song, Yan-Kui}, title = {On $\scr L$-starcompact spaces}, journal = {Czechoslovak Mathematical Journal}, pages = {781--788}, publisher = {mathdoc}, volume = {56}, number = {2}, year = {2006}, mrnumber = {2291775}, zbl = {1164.54356}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a39/} }
Song, Yan-Kui. On $\scr L$-starcompact spaces. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 781-788. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a39/