On $\scr L$-starcompact spaces
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 781-788.

Voir la notice de l'article dans Czech Digital Mathematics Library

A space $X$ is $\mathcal L$-starcompact if for every open cover $\mathcal U$ of $X,$ there exists a Lindelöf subset $L$ of $X$ such that $\mathop {\mathrm St}(L,{\mathcal U})=X.$ We clarify the relations between ${\mathcal L}$-starcompact spaces and other related spaces and investigate topological properties of ${\mathcal L}$-starcompact spaces. A question of Hiremath is answered.
Classification : 54B10, 54D20, 54D55
Mots-clés : Lindelöf; star-Lindelöf and ${\mathcal L}$-starcompact
@article{CMJ_2006__56_2_a39,
     author = {Song, Yan-Kui},
     title = {On $\scr L$-starcompact spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {781--788},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2006},
     mrnumber = {2291775},
     zbl = {1164.54356},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a39/}
}
TY  - JOUR
AU  - Song, Yan-Kui
TI  - On $\scr L$-starcompact spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 781
EP  - 788
VL  - 56
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a39/
LA  - en
ID  - CMJ_2006__56_2_a39
ER  - 
%0 Journal Article
%A Song, Yan-Kui
%T On $\scr L$-starcompact spaces
%J Czechoslovak Mathematical Journal
%D 2006
%P 781-788
%V 56
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a39/
%G en
%F CMJ_2006__56_2_a39
Song, Yan-Kui. On $\scr L$-starcompact spaces. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 781-788. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a39/