Estimates of global dimension
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 773-780.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this note we show that for a $\ast ^{n}$-module, in particular, an almost $n$-tilting module, $P$ over a ring $R$ with $A=\mathop {\mathrm End}_{R}P$ such that $P_A$ has finite flat dimension, the upper bound of the global dimension of $A$ can be estimated by the global dimension of $R$ and hence generalize the corresponding results in tilting theory and the ones in the theory of $\ast $-modules. As an application, we show that for a finitely generated projective module over a VN regular ring $R$, the global dimension of its endomorphism ring is not more than the global dimension of $R$.
@article{CMJ_2006__56_2_a38, author = {Jiaqun, Wei}, title = {Estimates of global dimension}, journal = {Czechoslovak Mathematical Journal}, pages = {773--780}, publisher = {mathdoc}, volume = {56}, number = {2}, year = {2006}, mrnumber = {2291774}, zbl = {1157.16301}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a38/} }
Jiaqun, Wei. Estimates of global dimension. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 773-780. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a38/