Estimates of global dimension
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 773-780.

Voir la notice de l'article dans Czech Digital Mathematics Library

In this note we show that for a $\ast ^{n}$-module, in particular, an almost $n$-tilting module, $P$ over a ring $R$ with $A=\mathop {\mathrm End}_{R}P$ such that $P_A$ has finite flat dimension, the upper bound of the global dimension of $A$ can be estimated by the global dimension of $R$ and hence generalize the corresponding results in tilting theory and the ones in the theory of $\ast $-modules. As an application, we show that for a finitely generated projective module over a VN regular ring $R$, the global dimension of its endomorphism ring is not more than the global dimension of $R$.
Classification : 16D90, 16E10, 16E30
Mots-clés : global dimension; $\ast $-module
@article{CMJ_2006__56_2_a38,
     author = {Jiaqun, Wei},
     title = {Estimates of global dimension},
     journal = {Czechoslovak Mathematical Journal},
     pages = {773--780},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2006},
     mrnumber = {2291774},
     zbl = {1157.16301},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a38/}
}
TY  - JOUR
AU  - Jiaqun, Wei
TI  - Estimates of global dimension
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 773
EP  - 780
VL  - 56
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a38/
LA  - en
ID  - CMJ_2006__56_2_a38
ER  - 
%0 Journal Article
%A Jiaqun, Wei
%T Estimates of global dimension
%J Czechoslovak Mathematical Journal
%D 2006
%P 773-780
%V 56
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a38/
%G en
%F CMJ_2006__56_2_a38
Jiaqun, Wei. Estimates of global dimension. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 773-780. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a38/