The weak hereditary class of a variety
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 697-710.
Voir la notice de l'article dans Czech Digital Mathematics Library
We study the weak hereditary class $S_{w}(\mathcal K)$ of all weak subalgebras of algebras in a total variety $\mathcal K$. We establish an algebraic characterization, in the sense of Birkhoff’s HSP theorem, and a syntactical characterization of these classes. We also consider the problem of when such a weak hereditary class is weak equational.
Classification :
08A55, 08B99
Mots-clés : partial algebras; varieties; weak subalgebras; weak equations
Mots-clés : partial algebras; varieties; weak subalgebras; weak equations
@article{CMJ_2006__56_2_a32, author = {Bartol, Wiktor and Rossell\'o, Francesc}, title = {The weak hereditary class of a variety}, journal = {Czechoslovak Mathematical Journal}, pages = {697--710}, publisher = {mathdoc}, volume = {56}, number = {2}, year = {2006}, mrnumber = {2291768}, zbl = {1164.08303}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a32/} }
Bartol, Wiktor; Rosselló, Francesc. The weak hereditary class of a variety. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 697-710. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a32/