The hamiltonian chromatic number of a connected graph without large hamiltonian-connected subgraphs
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 317-338.
Voir la notice de l'article dans Czech Digital Mathematics Library
If $G$ is a connected graph of order $n \ge 1$, then by a hamiltonian coloring of $G$ we mean a mapping $c$ of $V(G)$ into the set of all positive integers such that $\vert c(x) - c(y)\vert \ge n - 1 - D_{G}(x, y)$ (where $D_{G}(x, y)$ denotes the length of a longest $x-y$ path in $G$) for all distinct $x, y \in V(G)$. Let $G$ be a connected graph. By the hamiltonian chromatic number of $G$ we mean \[ \min (\max (c(z);\, z \in V(G))), \] where the minimum is taken over all hamiltonian colorings $c$ of $G$. The main result of this paper can be formulated as follows: Let $G$ be a connected graph of order $n \ge 3$. Assume that there exists a subgraph $F$ of $G$ such that $F$ is a hamiltonian-connected graph of order $i$, where $2 \le i \le \frac{1}{2}(n + 1)$. Then $\mathop {\mathrm hc}(G) \le (n - 2)^2 + 1 - 2(i - 1)(i - 2)$.
Classification :
05C15, 05C38, 05C45, 05C78
Mots-clés : connected graphs; hamiltonian-connected subgraphs; hamiltonian colorings; hamiltonian chromatic number
Mots-clés : connected graphs; hamiltonian-connected subgraphs; hamiltonian colorings; hamiltonian chromatic number
@article{CMJ_2006__56_2_a3, author = {Nebesk\'y, Ladislav}, title = {The hamiltonian chromatic number of a connected graph without large hamiltonian-connected subgraphs}, journal = {Czechoslovak Mathematical Journal}, pages = {317--338}, publisher = {mathdoc}, volume = {56}, number = {2}, year = {2006}, mrnumber = {2291739}, zbl = {1164.05356}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a3/} }
TY - JOUR AU - Nebeský, Ladislav TI - The hamiltonian chromatic number of a connected graph without large hamiltonian-connected subgraphs JO - Czechoslovak Mathematical Journal PY - 2006 SP - 317 EP - 338 VL - 56 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a3/ LA - en ID - CMJ_2006__56_2_a3 ER -
%0 Journal Article %A Nebeský, Ladislav %T The hamiltonian chromatic number of a connected graph without large hamiltonian-connected subgraphs %J Czechoslovak Mathematical Journal %D 2006 %P 317-338 %V 56 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a3/ %G en %F CMJ_2006__56_2_a3
Nebeský, Ladislav. The hamiltonian chromatic number of a connected graph without large hamiltonian-connected subgraphs. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 317-338. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a3/