The hamiltonian chromatic number of a connected graph without large hamiltonian-connected subgraphs
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 317-338.

Voir la notice de l'article dans Czech Digital Mathematics Library

If $G$ is a connected graph of order $n \ge 1$, then by a hamiltonian coloring of $G$ we mean a mapping $c$ of $V(G)$ into the set of all positive integers such that $\vert c(x) - c(y)\vert \ge n - 1 - D_{G}(x, y)$ (where $D_{G}(x, y)$ denotes the length of a longest $x-y$ path in $G$) for all distinct $x, y \in V(G)$. Let $G$ be a connected graph. By the hamiltonian chromatic number of $G$ we mean \[ \min (\max (c(z);\, z \in V(G))), \] where the minimum is taken over all hamiltonian colorings $c$ of $G$. The main result of this paper can be formulated as follows: Let $G$ be a connected graph of order $n \ge 3$. Assume that there exists a subgraph $F$ of $G$ such that $F$ is a hamiltonian-connected graph of order $i$, where $2 \le i \le \frac{1}{2}(n + 1)$. Then $\mathop {\mathrm hc}(G) \le (n - 2)^2 + 1 - 2(i - 1)(i - 2)$.
Classification : 05C15, 05C38, 05C45, 05C78
Mots-clés : connected graphs; hamiltonian-connected subgraphs; hamiltonian colorings; hamiltonian chromatic number
@article{CMJ_2006__56_2_a3,
     author = {Nebesk\'y, Ladislav},
     title = {The hamiltonian chromatic number of a connected graph without large hamiltonian-connected subgraphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {317--338},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2006},
     mrnumber = {2291739},
     zbl = {1164.05356},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a3/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - The hamiltonian chromatic number of a connected graph without large hamiltonian-connected subgraphs
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 317
EP  - 338
VL  - 56
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a3/
LA  - en
ID  - CMJ_2006__56_2_a3
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T The hamiltonian chromatic number of a connected graph without large hamiltonian-connected subgraphs
%J Czechoslovak Mathematical Journal
%D 2006
%P 317-338
%V 56
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a3/
%G en
%F CMJ_2006__56_2_a3
Nebeský, Ladislav. The hamiltonian chromatic number of a connected graph without large hamiltonian-connected subgraphs. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 317-338. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a3/