Travel groupoids
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 659-675.

Voir la notice de l'article dans Czech Digital Mathematics Library

In this paper, by a travel groupoid is meant an ordered pair $(V, *)$ such that $V$ is a nonempty set and $*$ is a binary operation on $V$ satisfying the following two conditions for all $u, v \in V$: \[ (u * v) * u = u; \text{ if }(u * v ) * v = u, \text{ then } u = v. \] Let $(V, *)$ be a travel groupoid. It is easy to show that if $x, y \in V$, then $x * y = y$ if and only if $y * x = x$. We say that $(V, *)$ is on a (finite or infinite) graph $G$ if $V(G) = V$ and \[ E(G) = \lbrace \lbrace u, v\rbrace \: u, v \in V \text{ and } u \ne u * v = v\rbrace . \] Clearly, every travel groupoid is on exactly one graph. In this paper, some properties of travel groupoids on graphs are studied.
Classification : 05C12, 05C25, 05C38, 20N02
Mots-clés : travel groupoid; graph; path; geodetic graph
@article{CMJ_2006__56_2_a29,
     author = {Nebesk\'y, Ladislav},
     title = {Travel groupoids},
     journal = {Czechoslovak Mathematical Journal},
     pages = {659--675},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2006},
     mrnumber = {2291765},
     zbl = {1157.20336},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a29/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - Travel groupoids
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 659
EP  - 675
VL  - 56
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a29/
LA  - en
ID  - CMJ_2006__56_2_a29
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T Travel groupoids
%J Czechoslovak Mathematical Journal
%D 2006
%P 659-675
%V 56
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a29/
%G en
%F CMJ_2006__56_2_a29
Nebeský, Ladislav. Travel groupoids. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 659-675. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a29/