Positive vector measures with given marginals
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 613-619.

Voir la notice de l'article dans Czech Digital Mathematics Library

Suppose $E$ is an ordered locally convex space, $X_{1} $ and $X_{2} $ Hausdorff completely regular spaces and $Q$ a uniformly bounded, convex and closed subset of $ M_{t}^{+}(X_{1} \times X_{2}, E) $. For $ i=1,2 $, let $ \mu _{i} \in M_{t}^{+}(X_{i}, E) $. Then, under some topological and order conditions on $E$, necessary and sufficient conditions are established for the existence of an element in $Q$, having marginals $ \mu _{1} $ and $ \mu _{2}$.
Classification : 28B05, 28C05, 46E10, 46G10, 60B05
Mots-clés : ordered locally convex space; order convergence; marginals
@article{CMJ_2006__56_2_a25,
     author = {Khurana, Surjit Singh},
     title = {Positive vector measures with given marginals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {613--619},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2006},
     mrnumber = {2291761},
     zbl = {1164.60306},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a25/}
}
TY  - JOUR
AU  - Khurana, Surjit Singh
TI  - Positive vector measures with given marginals
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 613
EP  - 619
VL  - 56
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a25/
LA  - en
ID  - CMJ_2006__56_2_a25
ER  - 
%0 Journal Article
%A Khurana, Surjit Singh
%T Positive vector measures with given marginals
%J Czechoslovak Mathematical Journal
%D 2006
%P 613-619
%V 56
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a25/
%G en
%F CMJ_2006__56_2_a25
Khurana, Surjit Singh. Positive vector measures with given marginals. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 613-619. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a25/