Indecomposable matrices over a distributive lattice
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 299-316.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this paper, the concepts of indecomposable matrices and fully indecomposable matrices over a distributive lattice $L$ are introduced, and some algebraic properties of them are obtained. Also, some characterizations of the set $F_n(L)$ of all $n\times n$ fully indecomposable matrices as a subsemigroup of the semigroup $H_n(L)$ of all $n\times n$ Hall matrices over the lattice $L$ are given.
Classification :
06D05, 15A18, 15A33
Mots-clés : distributive lattice; indecomposable matrix; fully indecomposable matrix; semigroup; characterization
Mots-clés : distributive lattice; indecomposable matrix; fully indecomposable matrix; semigroup; characterization
@article{CMJ_2006__56_2_a2, author = {Tan, Yi-jia}, title = {Indecomposable matrices over a distributive lattice}, journal = {Czechoslovak Mathematical Journal}, pages = {299--316}, publisher = {mathdoc}, volume = {56}, number = {2}, year = {2006}, mrnumber = {2291738}, zbl = {1164.15326}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a2/} }
Tan, Yi-jia. Indecomposable matrices over a distributive lattice. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 299-316. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a2/