Indecomposable matrices over a distributive lattice
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 299-316.

Voir la notice de l'article dans Czech Digital Mathematics Library

In this paper, the concepts of indecomposable matrices and fully indecomposable matrices over a distributive lattice $L$ are introduced, and some algebraic properties of them are obtained. Also, some characterizations of the set $F_n(L)$ of all $n\times n$ fully indecomposable matrices as a subsemigroup of the semigroup $H_n(L)$ of all $n\times n$ Hall matrices over the lattice $L$ are given.
Classification : 06D05, 15A18, 15A33
Mots-clés : distributive lattice; indecomposable matrix; fully indecomposable matrix; semigroup; characterization
@article{CMJ_2006__56_2_a2,
     author = {Tan, Yi-jia},
     title = {Indecomposable matrices over a distributive lattice},
     journal = {Czechoslovak Mathematical Journal},
     pages = {299--316},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2006},
     mrnumber = {2291738},
     zbl = {1164.15326},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a2/}
}
TY  - JOUR
AU  - Tan, Yi-jia
TI  - Indecomposable matrices over a distributive lattice
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 299
EP  - 316
VL  - 56
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a2/
LA  - en
ID  - CMJ_2006__56_2_a2
ER  - 
%0 Journal Article
%A Tan, Yi-jia
%T Indecomposable matrices over a distributive lattice
%J Czechoslovak Mathematical Journal
%D 2006
%P 299-316
%V 56
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a2/
%G en
%F CMJ_2006__56_2_a2
Tan, Yi-jia. Indecomposable matrices over a distributive lattice. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 299-316. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a2/