A local convergence theorem for partial sums of stochastic adapted sequences
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 525-532.

Voir la notice de l'article dans Czech Digital Mathematics Library

In this paper we establish a new local convergence theorem for partial sums of arbitrary stochastic adapted sequences. As corollaries, we generalize some recently obtained results and prove a limit theorem for the entropy density of an arbitrary information source, which is an extension of case of nonhomogeneous Markov chains.
Classification : 60F15
Mots-clés : local convergence theorem; stochastic adapted sequence; martingale
@article{CMJ_2006__56_2_a17,
     author = {Yang, Weiguo and Ye, Zhongxing and Liu, Wen},
     title = {A local convergence theorem for partial sums of stochastic adapted sequences},
     journal = {Czechoslovak Mathematical Journal},
     pages = {525--532},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2006},
     mrnumber = {2291753},
     zbl = {1164.60338},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a17/}
}
TY  - JOUR
AU  - Yang, Weiguo
AU  - Ye, Zhongxing
AU  - Liu, Wen
TI  - A local convergence theorem for partial sums of stochastic adapted sequences
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 525
EP  - 532
VL  - 56
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a17/
LA  - en
ID  - CMJ_2006__56_2_a17
ER  - 
%0 Journal Article
%A Yang, Weiguo
%A Ye, Zhongxing
%A Liu, Wen
%T A local convergence theorem for partial sums of stochastic adapted sequences
%J Czechoslovak Mathematical Journal
%D 2006
%P 525-532
%V 56
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a17/
%G en
%F CMJ_2006__56_2_a17
Yang, Weiguo; Ye, Zhongxing; Liu, Wen. A local convergence theorem for partial sums of stochastic adapted sequences. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 525-532. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a17/