Perimeter preserver of matrices over semifields
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 515-524.

Voir la notice de l'article dans Czech Digital Mathematics Library

For a rank-$1$ matrix $A= {\bold a \bold b}^t$, we define the perimeter of $A$ as the number of nonzero entries in both $\bold a$ and $\bold b$. We characterize the linear operators which preserve the rank and perimeter of rank-$1$ matrices over semifields. That is, a linear operator $T$ preserves the rank and perimeter of rank-$1$ matrices over semifields if and only if it has the form $T(A)=U A V$, or $T(A)=U A^t V$ with some invertible matrices U and V.
Classification : 15A03, 15A04, 15A23, 15A33
Mots-clés : linear operator; rank; dominate; perimeter; $(U, V)$-operator
@article{CMJ_2006__56_2_a16,
     author = {Song, Seok-Zun and Kang, Kyung-Tae and Jun, Young-Bae},
     title = {Perimeter preserver of matrices over semifields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {515--524},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2006},
     mrnumber = {2291752},
     zbl = {1164.15300},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a16/}
}
TY  - JOUR
AU  - Song, Seok-Zun
AU  - Kang, Kyung-Tae
AU  - Jun, Young-Bae
TI  - Perimeter preserver of matrices over semifields
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 515
EP  - 524
VL  - 56
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a16/
LA  - en
ID  - CMJ_2006__56_2_a16
ER  - 
%0 Journal Article
%A Song, Seok-Zun
%A Kang, Kyung-Tae
%A Jun, Young-Bae
%T Perimeter preserver of matrices over semifields
%J Czechoslovak Mathematical Journal
%D 2006
%P 515-524
%V 56
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a16/
%G en
%F CMJ_2006__56_2_a16
Song, Seok-Zun; Kang, Kyung-Tae; Jun, Young-Bae. Perimeter preserver of matrices over semifields. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 515-524. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a16/