Dimension in algebraic frames
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 437-474.

Voir la notice de l'article dans Czech Digital Mathematics Library

In an algebraic frame $L$ the dimension, $\dim (L)$, is defined, as in classical ideal theory, to be the maximum of the lengths $n$ of chains of primes $p_0$, if such a maximum exists, and $\infty $ otherwise. A notion of “dominance” is then defined among the compact elements of $L$, which affords one a primefree way to compute dimension. Various subordinate dimensions are considered on a number of frame quotients of $L$, including the frames $dL$ and $zL$ of $d$-elements and $z$-elements, respectively. The more concrete illustrations regarding the frame convex $\ell $-subgroups of a lattice-ordered group and its various natural frame quotients occupy the second half of this exposition. For example, it is shown that if $A$ is a commutative semiprime $f$-ring with finite $\ell $-dimension then $A$ must be hyperarchimedean. The $d$-dimension of an $\ell $-group is invariant under formation of direct products, whereas $\ell $-dimension is not. $r$-dimension of a commutative semiprime $f$-ring is either 0 or infinite, but this fails if nilpotent elements are present. $sp$-dimension coincides with classical Krull dimension in commutative semiprime $f$-rings with bounded inversion.
Classification : 06D22, 06F15, 06F25
Mots-clés : algebraic frame; dimension; $d$-elements; $z$-elements; lattice-ordered group; $f$-ring
@article{CMJ_2006__56_2_a12,
     author = {Mart{\'\i}nez, Jorge},
     title = {Dimension in algebraic frames},
     journal = {Czechoslovak Mathematical Journal},
     pages = {437--474},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2006},
     mrnumber = {2291748},
     zbl = {1164.06311},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a12/}
}
TY  - JOUR
AU  - Martínez, Jorge
TI  - Dimension in algebraic frames
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 437
EP  - 474
VL  - 56
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a12/
LA  - en
ID  - CMJ_2006__56_2_a12
ER  - 
%0 Journal Article
%A Martínez, Jorge
%T Dimension in algebraic frames
%J Czechoslovak Mathematical Journal
%D 2006
%P 437-474
%V 56
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a12/
%G en
%F CMJ_2006__56_2_a12
Martínez, Jorge. Dimension in algebraic frames. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 437-474. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a12/