Finite rank operators in Jacobson radical ${\scr R}\sb{{\scr N}\otimes{\scr M}}$
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 287-298.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this paper we investigate finite rank operators in the Jacobson radical $\mathcal R_{\mathcal N\otimes \mathcal M}$ of $\mathop {\mathrm Alg}(\mathcal N\otimes \mathcal M)$, where $\mathcal N$, $\mathcal M$ are nests. Based on the concrete characterizations of rank one operators in $\mathop {\mathrm Alg}(\mathcal N\otimes \mathcal M)$ and $\mathcal R_{\mathcal N\otimes \mathcal M}$, we obtain that each finite rank operator in $\mathcal R_{\mathcal N\otimes \mathcal M}$ can be written as a finite sum of rank one operators in $\mathcal R_{\mathcal N\otimes \mathcal M}$ and the weak closure of $\mathcal R_{\mathcal N\otimes \mathcal M}$ equals $\mathop {\mathrm Alg}({\mathcal N\otimes \mathcal M})$ if and only if at least one of $\mathcal N$, $\mathcal M$ is continuous.
@article{CMJ_2006__56_2_a1, author = {Zhe, Dong}, title = {Finite rank operators in {Jacobson} radical ${\scr R}\sb{{\scr N}\otimes{\scr M}}$}, journal = {Czechoslovak Mathematical Journal}, pages = {287--298}, publisher = {mathdoc}, volume = {56}, number = {2}, year = {2006}, mrnumber = {2291737}, zbl = {1164.47398}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a1/} }
TY - JOUR AU - Zhe, Dong TI - Finite rank operators in Jacobson radical ${\scr R}\sb{{\scr N}\otimes{\scr M}}$ JO - Czechoslovak Mathematical Journal PY - 2006 SP - 287 EP - 298 VL - 56 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a1/ LA - en ID - CMJ_2006__56_2_a1 ER -
Zhe, Dong. Finite rank operators in Jacobson radical ${\scr R}\sb{{\scr N}\otimes{\scr M}}$. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 287-298. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_2_a1/