The ordering of commutative terms
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 133-154.

Voir la notice de l'article dans Czech Digital Mathematics Library

By a commutative term we mean an element of the free commutative groupoid $F$ of infinite rank. For two commutative terms $a$, $b$ write $a\le b$ if $b$ contains a subterm that is a substitution instance of $a$. With respect to this relation, $F$ is a quasiordered set which becomes an ordered set after the appropriate factorization. We study definability in this ordered set. Among other things, we prove that every commutative term (or its block in the factor) is a definable element. Consequently, the ordered set has no automorphisms except the identity.
Classification : 03C40, 06A07, 08B20
Mots-clés : definable; term
@article{CMJ_2006__56_1_a9,
     author = {Je\v{z}ek, J.},
     title = {The ordering of commutative terms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {133--154},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2006},
     mrnumber = {2207011},
     zbl = {1164.03318},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a9/}
}
TY  - JOUR
AU  - Ježek, J.
TI  - The ordering of commutative terms
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 133
EP  - 154
VL  - 56
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a9/
LA  - en
ID  - CMJ_2006__56_1_a9
ER  - 
%0 Journal Article
%A Ježek, J.
%T The ordering of commutative terms
%J Czechoslovak Mathematical Journal
%D 2006
%P 133-154
%V 56
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a9/
%G en
%F CMJ_2006__56_1_a9
Ježek, J. The ordering of commutative terms. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 133-154. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a9/