Isotype knice subgroups of global Warfield groups
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 109-132.
Voir la notice de l'article dans Czech Digital Mathematics Library
If $H$ is an isotype knice subgroup of a global Warfield group $G$, we introduce the notion of a $k$-subgroup to obtain various necessary and sufficient conditions on the quotient group $G/H$ in order for $H$ itself to be a global Warfield group. Our main theorem is that $H$ is a global Warfield group if and only if $G/H$ possesses an $H(\aleph _0)$-family of almost strongly separable $k$-subgroups. By an $H(\aleph _0)$-family we mean an Axiom 3 family in the strong sense of P. Hill. As a corollary to the main theorem, we are able to characterize those global $k$-groups of sequentially pure projective dimension $\le 1$.
Classification :
20K21, 20K27
Mots-clés : global Warfield group; isotype subgroup; knice subgroup; $k$-subgroup; separable subgroup; compatible subgroups; Axiom 3; closed set method; global $k$-group; sequentially pure projective dimension
Mots-clés : global Warfield group; isotype subgroup; knice subgroup; $k$-subgroup; separable subgroup; compatible subgroups; Axiom 3; closed set method; global $k$-group; sequentially pure projective dimension
@article{CMJ_2006__56_1_a8, author = {Megibben, Charles and Ullery, William}, title = {Isotype knice subgroups of global {Warfield} groups}, journal = {Czechoslovak Mathematical Journal}, pages = {109--132}, publisher = {mathdoc}, volume = {56}, number = {1}, year = {2006}, mrnumber = {2206290}, zbl = {1157.20028}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a8/} }
TY - JOUR AU - Megibben, Charles AU - Ullery, William TI - Isotype knice subgroups of global Warfield groups JO - Czechoslovak Mathematical Journal PY - 2006 SP - 109 EP - 132 VL - 56 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a8/ LA - en ID - CMJ_2006__56_1_a8 ER -
Megibben, Charles; Ullery, William. Isotype knice subgroups of global Warfield groups. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 109-132. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a8/