On a homogeneity condition for $MV$-algebras
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 79-98.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this paper we deal with a homogeneity condition for an $MV$-algebra concerning a generalized cardinal property. As an application, we consider the homogeneity with respect to $\alpha $-completeness, where $\alpha $ runs over the class of all infinite cardinals.
Classification :
06D35
Mots-clés : $MV$-algebra; generalized cardinal property; projectability; orthogonal completeness; direct product
Mots-clés : $MV$-algebra; generalized cardinal property; projectability; orthogonal completeness; direct product
@article{CMJ_2006__56_1_a6, author = {Jakub{\'\i}k, J\'an}, title = {On a homogeneity condition for $MV$-algebras}, journal = {Czechoslovak Mathematical Journal}, pages = {79--98}, publisher = {mathdoc}, volume = {56}, number = {1}, year = {2006}, mrnumber = {2206288}, zbl = {1164.06314}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a6/} }
Jakubík, Ján. On a homogeneity condition for $MV$-algebras. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 79-98. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a6/