Invariant subspaces of $X^{**}$ under the action of biconjugates
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 61-77.
Voir la notice de l'article dans Czech Digital Mathematics Library
We study conditions on an infinite dimensional separable Banach space $X$ implying that $X$ is the only non-trivial invariant subspace of $X^{**}$ under the action of the algebra $\mathbb{A}(X)$ of biconjugates of bounded operators on $X$: $\mathbb{A}(X)=\lbrace T^{**}\: T \in \mathcal {B}(X)\rbrace $. Such a space is called simple. We characterize simple spaces among spaces which contain an isomorphic copy of $c_{0}$, and show in particular that any space which does not contain $\ell _1$ and has property (u) of Pelczynski is simple.
Classification :
46B10, 46B25, 46B99, 47A15, 47L05
Mots-clés : algebras of operators with only one non-trivial invariant subspace; invariant subspaces under the action of the algebra of biconjugates operators; transitivity; property (u) of Pelczynski
Mots-clés : algebras of operators with only one non-trivial invariant subspace; invariant subspaces under the action of the algebra of biconjugates operators; transitivity; property (u) of Pelczynski
@article{CMJ_2006__56_1_a5, author = {Grivaux, Sophie and Rycht\'a\v{r}, Jan}, title = {Invariant subspaces of $X^{**}$ under the action of biconjugates}, journal = {Czechoslovak Mathematical Journal}, pages = {61--77}, publisher = {mathdoc}, volume = {56}, number = {1}, year = {2006}, mrnumber = {2206287}, zbl = {1164.47302}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a5/} }
TY - JOUR AU - Grivaux, Sophie AU - Rychtář, Jan TI - Invariant subspaces of $X^{**}$ under the action of biconjugates JO - Czechoslovak Mathematical Journal PY - 2006 SP - 61 EP - 77 VL - 56 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a5/ LA - en ID - CMJ_2006__56_1_a5 ER -
Grivaux, Sophie; Rychtář, Jan. Invariant subspaces of $X^{**}$ under the action of biconjugates. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 61-77. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a5/