Removable singularities for weighted Bergman spaces
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 179-227.

Voir la notice de l'article dans Czech Digital Mathematics Library

We develop a theory of removable singularities for the weighted Bergman space ${\mathcal A}^p_\mu (\Omega )=\lbrace f \text{analytic} \text{in} \Omega \: \int _\Omega |f|^p \mathrm{d}\mu \infty \rbrace $, where $\mu $ is a Radon measure on $\mathbb{C}$. The set $A$ is weakly removable for ${\mathcal A}^p_\mu (\Omega \setminus A)$ if ${\mathcal A}^p_\mu (\Omega \setminus A) \subset \text{Hol}(\Omega )$, and strongly removable for ${\mathcal A}^p_\mu (\Omega \setminus A)$ if ${\mathcal A}^p_\mu (\Omega \setminus A) = {\mathcal A}^p_\mu (\Omega )$. The general theory developed is in many ways similar to the theory of removable singularities for Hardy $H^p$ spaces, $\mathop {\mathrm BMO}$ and locally Lipschitz spaces of analytic functions, including the existence of counterexamples to many plausible properties, e.g. the union of two compact removable singularities needs not be removable. In the case when weak and strong removability are the same for all sets, in particular if $\mu $ is absolutely continuous with respect to the Lebesgue measure $m$, we are able to say more than in the general case. In this case we obtain a Dolzhenko type result saying that a countable union of compact removable singularities is removable. When $\mathrm{d}\mu = w\mathrm{d}m$ and $w$ is a Muckenhoupt $A_p$ weight, $1$, the removable singularities are characterized as the null sets of the weighted Sobolev space capacity with respect to the dual exponent $p^{\prime }=p/(p-1)$ and the dual weight $w^{\prime }=w^{1/(1-p)}$.
Classification : 30B40, 30D60, 32A36, 32D20, 46E10, 46E15
Mots-clés : analytic continuation; analytic function; Bergman space; capacity; exceptional set; holomorphic function; Muckenhoupt weight; removable singularity; singular set; Sobolev space; weight
@article{CMJ_2006__56_1_a11,
     author = {Bj\"orn, Anders},
     title = {Removable singularities for weighted {Bergman} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {179--227},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2006},
     mrnumber = {2207013},
     zbl = {1164.30303},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a11/}
}
TY  - JOUR
AU  - Björn, Anders
TI  - Removable singularities for weighted Bergman spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 179
EP  - 227
VL  - 56
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a11/
LA  - en
ID  - CMJ_2006__56_1_a11
ER  - 
%0 Journal Article
%A Björn, Anders
%T Removable singularities for weighted Bergman spaces
%J Czechoslovak Mathematical Journal
%D 2006
%P 179-227
%V 56
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a11/
%G en
%F CMJ_2006__56_1_a11
Björn, Anders. Removable singularities for weighted Bergman spaces. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 179-227. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a11/