Diagonal reductions of matrices over exchange ideals
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 9-18.

Voir la notice de l'article dans Czech Digital Mathematics Library

In this paper, we introduce related comparability for exchange ideals. Let $I$ be an exchange ideal of a ring $R$. If $I$ satisfies related comparability, then for any regular matrix $A\in M_n(I)$, there exist left invertible $U_1,U_2\in M_n(R)$ and right invertible $V_1,V_2\in M_n(R)$ such that $U_1V_1AU_2V_2= \operatorname{diag}(e_1,\cdots ,e_n)$ for idempotents $e_1,\cdots ,e_n\in I$.
Classification : 15A21, 16D25, 16D70, 16E20, 16E50, 16U60, 16U99
Mots-clés : exchange ring; ideal; related comparability
@article{CMJ_2006__56_1_a1,
     author = {Chen, Huanyin},
     title = {Diagonal reductions of matrices over exchange ideals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {9--18},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2006},
     mrnumber = {2206283},
     zbl = {1157.16302},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a1/}
}
TY  - JOUR
AU  - Chen, Huanyin
TI  - Diagonal reductions of matrices over exchange ideals
JO  - Czechoslovak Mathematical Journal
PY  - 2006
SP  - 9
EP  - 18
VL  - 56
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a1/
LA  - en
ID  - CMJ_2006__56_1_a1
ER  - 
%0 Journal Article
%A Chen, Huanyin
%T Diagonal reductions of matrices over exchange ideals
%J Czechoslovak Mathematical Journal
%D 2006
%P 9-18
%V 56
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a1/
%G en
%F CMJ_2006__56_1_a1
Chen, Huanyin. Diagonal reductions of matrices over exchange ideals. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 9-18. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a1/