Diagonal reductions of matrices over exchange ideals
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 9-18.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this paper, we introduce related comparability for exchange ideals. Let $I$ be an exchange ideal of a ring $R$. If $I$ satisfies related comparability, then for any regular matrix $A\in M_n(I)$, there exist left invertible $U_1,U_2\in M_n(R)$ and right invertible $V_1,V_2\in M_n(R)$ such that $U_1V_1AU_2V_2= \operatorname{diag}(e_1,\cdots ,e_n)$ for idempotents $e_1,\cdots ,e_n\in I$.
Classification :
15A21, 16D25, 16D70, 16E20, 16E50, 16U60, 16U99
Mots-clés : exchange ring; ideal; related comparability
Mots-clés : exchange ring; ideal; related comparability
@article{CMJ_2006__56_1_a1, author = {Chen, Huanyin}, title = {Diagonal reductions of matrices over exchange ideals}, journal = {Czechoslovak Mathematical Journal}, pages = {9--18}, publisher = {mathdoc}, volume = {56}, number = {1}, year = {2006}, mrnumber = {2206283}, zbl = {1157.16302}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a1/} }
Chen, Huanyin. Diagonal reductions of matrices over exchange ideals. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 9-18. https://geodesic-test.mathdoc.fr/item/CMJ_2006__56_1_a1/