An algebraic characterization of geodetic graphs
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 701-710.

Voir la notice de l'article dans Czech Digital Mathematics Library

We say that a binary operation $*$ is associated with a (finite undirected) graph $G$ (without loops and multiple edges) if $*$ is defined on $V(G)$ and $uv\in E(G)$ if and only if $u\ne v$, $u * v=v$ and $v*u=u$ for any $u$, $v\in V(G)$. In the paper it is proved that a connected graph $G$ is geodetic if and only if there exists a binary operation associated with $G$ which fulfils a certain set of four axioms. (This characterization is obtained as an immediate consequence of a stronger result proved in the paper).
Classification : 05C12, 05C38, 05C75, 20N02
@article{CMJ_1998__48_4_a7,
     author = {Nebesk\'y, Ladislav},
     title = {An algebraic characterization of geodetic graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {701--710},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {1998},
     mrnumber = {1658245},
     zbl = {0949.05022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_4_a7/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - An algebraic characterization of geodetic graphs
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 701
EP  - 710
VL  - 48
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_4_a7/
LA  - en
ID  - CMJ_1998__48_4_a7
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T An algebraic characterization of geodetic graphs
%J Czechoslovak Mathematical Journal
%D 1998
%P 701-710
%V 48
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_4_a7/
%G en
%F CMJ_1998__48_4_a7
Nebeský, Ladislav. An algebraic characterization of geodetic graphs. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 701-710. https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_4_a7/