On the Neumann-Poincaré operator
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 653-668.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $\Gamma $ be a rectifiable Jordan curve in the finite complex plane $\mathbb C$ which is regular in the sense of Ahlfors and David. Denote by $L^2_C (\Gamma )$ the space of all complex-valued functions on $\Gamma $ which are square integrable w.r. to the arc-length on $\Gamma $. Let $L^2(\Gamma )$ stand for the space of all real-valued functions in $L^2_C (\Gamma )$ and put \[ L^2_0 (\Gamma ) = \lbrace h \in L^2 (\Gamma )\; \int _{\Gamma } h(\zeta ) |\mathrm{d}\zeta | =0\rbrace . \] Since the Cauchy singular operator is bounded on $L^2_C (\Gamma )$, the Neumann-Poincaré operator $C_1^{\Gamma }$ sending each $h \in L^2 (\Gamma )$ into \[ C_1^{\Gamma } h(\zeta _0) := \Re (\pi \mathrm{i})^{-1} \mathop {\mathrm P. V.}\int _{\Gamma } \frac{h(\zeta )}{\zeta -\zeta _0} \mathrm{d}\zeta , \quad \zeta _0 \in \Gamma , \] is bounded on $L^2(\Gamma )$. We show that the inclusion \[ C_1^{\Gamma } (L^2_0 (\Gamma )) \subset L^2_0 (\Gamma ) \] characterizes the circle in the class of all $AD$-regular Jordan curves $\Gamma $.
Classification : 30E20, 47B38
Mots-clés : Cauchy’s singular operator; the Neumann-Poincaré operator; curves regular in the sense of Ahlfors and David
@article{CMJ_1998__48_4_a3,
     author = {Kr\'al, Josef and Medkov\'a, Dagmar},
     title = {On the {Neumann-Poincar\'e} operator},
     journal = {Czechoslovak Mathematical Journal},
     pages = {653--668},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {1998},
     mrnumber = {1658229},
     zbl = {0956.30018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_4_a3/}
}
TY  - JOUR
AU  - Král, Josef
AU  - Medková, Dagmar
TI  - On the Neumann-Poincaré operator
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 653
EP  - 668
VL  - 48
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_4_a3/
LA  - en
ID  - CMJ_1998__48_4_a3
ER  - 
%0 Journal Article
%A Král, Josef
%A Medková, Dagmar
%T On the Neumann-Poincaré operator
%J Czechoslovak Mathematical Journal
%D 1998
%P 653-668
%V 48
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_4_a3/
%G en
%F CMJ_1998__48_4_a3
Král, Josef; Medková, Dagmar. On the Neumann-Poincaré operator. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 653-668. https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_4_a3/