On a class of real normed lattices
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 785-792.
Voir la notice de l'article dans Czech Digital Mathematics Library
We say that a real normed lattice is quasi-Baire if the intersection of each sequence of monotonic open dense sets is dense. An example of a Baire-convex space, due to M. Valdivia, which is not quasi-Baire is given. We obtain that $E$ is a quasi-Baire space iff $(E, T({\mathcal U}),T({\mathcal U}^{-1}))$, is a pairwise Baire bitopological space, where $\mathcal U$, is a quasi-uniformity that determines, in $L$. Nachbin’s sense, the topological ordered space $E$.
Classification :
54E15, 54E52, 54E55, 54F05
Mots-clés : Barrelled space; convex-Baire space; normed lattice; pairwise Baire spaces; quasi-Baire spaces; quasi-uniformity
Mots-clés : Barrelled space; convex-Baire space; normed lattice; pairwise Baire spaces; quasi-Baire spaces; quasi-uniformity
@article{CMJ_1998__48_4_a14, author = {Alegre, C. and Ferrer, J. and Gregori, V.}, title = {On a class of real normed lattices}, journal = {Czechoslovak Mathematical Journal}, pages = {785--792}, publisher = {mathdoc}, volume = {48}, number = {4}, year = {1998}, mrnumber = {1658273}, zbl = {0949.54045}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_4_a14/} }
Alegre, C.; Ferrer, J.; Gregori, V. On a class of real normed lattices. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 785-792. https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_4_a14/