Convergence estimate for second order Cauchy problems with a small parameter
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 737-745.
Voir la notice de l'article dans Czech Digital Mathematics Library
We consider the second order initial value problem in a Hilbert space, which is a singular perturbation of a first order initial value problem. The difference of the solution and its singular limit is estimated in terms of the small parameter $\varepsilon .$ The coefficients are commuting self-adjoint operators and the estimates hold also for the semilinear problem.
@article{CMJ_1998__48_4_a10, author = {Najman, Branko}, title = {Convergence estimate for second order {Cauchy} problems with a small parameter}, journal = {Czechoslovak Mathematical Journal}, pages = {737--745}, publisher = {mathdoc}, volume = {48}, number = {4}, year = {1998}, mrnumber = {1658257}, zbl = {0952.35151}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_4_a10/} }
TY - JOUR AU - Najman, Branko TI - Convergence estimate for second order Cauchy problems with a small parameter JO - Czechoslovak Mathematical Journal PY - 1998 SP - 737 EP - 745 VL - 48 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_4_a10/ LA - en ID - CMJ_1998__48_4_a10 ER -
Najman, Branko. Convergence estimate for second order Cauchy problems with a small parameter. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 737-745. https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_4_a10/