An asymptotic theorem for a class of nonlinear neutral differential equations
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 419-432.
Voir la notice de l'article dans Czech Digital Mathematics Library
The neutral differential equation (1.1) $$ \frac{{\mathrm{d}}^n}{{\mathrm{d}} t^n} [x(t)+x(t-\tau)] + \sigma F(t,x(g(t))) = 0, $$ is considered under the following conditions: $n\ge 2$, $\tau >0$, $\sigma = \pm 1$, $F(t,u)$ is nonnegative on $[t_0, \infty) \times (0,\infty)$ and is nondecreasing in $u\in (0,\infty)$, and $\lim g(t) = \infty$ as $t\rightarrow \infty$. It is shown that equation (1.1) has a solution $x(t)$ such that (1.2) $$ \lim_{t\rightarrow \infty} \frac{x(t)}{t^k}\ \text{exists and is a positive finite value if and only if} \int^{\infty}_{t_0} t^{n-k-1} F(t,c[g(t)]^k){\mathrm{d}} t \infty\text{ for some }c > 0. $$ Here, $k$ is an integer with $0\le k \le n-1$. To prove the existence of a solution $x(t)$ satisfying (1.2), the Schauder-Tychonoff fixed point theorem is used.
@article{CMJ_1998__48_3_a3, author = {Naito, Manabu}, title = {An asymptotic theorem for a class of nonlinear neutral differential equations}, journal = {Czechoslovak Mathematical Journal}, pages = {419--432}, publisher = {mathdoc}, volume = {48}, number = {3}, year = {1998}, mrnumber = {1637902}, zbl = {0955.34064}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_3_a3/} }
TY - JOUR AU - Naito, Manabu TI - An asymptotic theorem for a class of nonlinear neutral differential equations JO - Czechoslovak Mathematical Journal PY - 1998 SP - 419 EP - 432 VL - 48 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_3_a3/ LA - en ID - CMJ_1998__48_3_a3 ER -
Naito, Manabu. An asymptotic theorem for a class of nonlinear neutral differential equations. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 419-432. https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_3_a3/