The maximum genus, matchings and the cycle space of a graph
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 329-339.

Voir la notice de l'article dans Czech Digital Mathematics Library

In this paper we determine the maximum genus of a graph by using the matching number of the intersection graph of a basis of its cycle space. Our result is a common generalization of a theorem of Glukhov and a theorem of Nebeský .
Classification : 05C10, 05C38, 05C70
Mots-clés : Maximum genus; matching; cycle space
@article{CMJ_1998__48_2_a9,
     author = {Fu, Hung-Lin and \v{S}koviera, Martin and Tsai, Ming-Chun},
     title = {The maximum genus, matchings and the cycle space of a graph},
     journal = {Czechoslovak Mathematical Journal},
     pages = {329--339},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {1998},
     mrnumber = {1624256},
     zbl = {0949.05015},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_2_a9/}
}
TY  - JOUR
AU  - Fu, Hung-Lin
AU  - Škoviera, Martin
AU  - Tsai, Ming-Chun
TI  - The maximum genus, matchings and the cycle space of a graph
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 329
EP  - 339
VL  - 48
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_2_a9/
LA  - en
ID  - CMJ_1998__48_2_a9
ER  - 
%0 Journal Article
%A Fu, Hung-Lin
%A Škoviera, Martin
%A Tsai, Ming-Chun
%T The maximum genus, matchings and the cycle space of a graph
%J Czechoslovak Mathematical Journal
%D 1998
%P 329-339
%V 48
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_2_a9/
%G en
%F CMJ_1998__48_2_a9
Fu, Hung-Lin; Škoviera, Martin; Tsai, Ming-Chun. The maximum genus, matchings and the cycle space of a graph. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 329-339. https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_2_a9/