The maximum genus, matchings and the cycle space of a graph
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 329-339.
Voir la notice de l'article dans Czech Digital Mathematics Library
In this paper we determine the maximum genus of a graph by using the matching number of the intersection graph of a basis of its cycle space. Our result is a common generalization of a theorem of Glukhov and a theorem of Nebeský .
@article{CMJ_1998__48_2_a9, author = {Fu, Hung-Lin and \v{S}koviera, Martin and Tsai, Ming-Chun}, title = {The maximum genus, matchings and the cycle space of a graph}, journal = {Czechoslovak Mathematical Journal}, pages = {329--339}, publisher = {mathdoc}, volume = {48}, number = {2}, year = {1998}, mrnumber = {1624256}, zbl = {0949.05015}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_2_a9/} }
TY - JOUR AU - Fu, Hung-Lin AU - Škoviera, Martin AU - Tsai, Ming-Chun TI - The maximum genus, matchings and the cycle space of a graph JO - Czechoslovak Mathematical Journal PY - 1998 SP - 329 EP - 339 VL - 48 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_2_a9/ LA - en ID - CMJ_1998__48_2_a9 ER -
%0 Journal Article %A Fu, Hung-Lin %A Škoviera, Martin %A Tsai, Ming-Chun %T The maximum genus, matchings and the cycle space of a graph %J Czechoslovak Mathematical Journal %D 1998 %P 329-339 %V 48 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_2_a9/ %G en %F CMJ_1998__48_2_a9
Fu, Hung-Lin; Škoviera, Martin; Tsai, Ming-Chun. The maximum genus, matchings and the cycle space of a graph. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 329-339. https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_2_a9/