Small idempotent clones. I
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 105-118.

Voir la notice de l'article dans Czech Digital Mathematics Library

G. Grätzer and A. Kisielewicz devoted one section of their survey paper concerning $p_n$-sequences and free spectra of algebras to the topic “Small idempotent clones” (see Section 6 of [18]). Many authors, e.g., [8], [14, 15], [22], [25] and [29, 30] were interested in $p_n$-sequences of idempotent algebras with small rates of growth. In this paper we continue this topic and characterize all idempotent groupoids $(G,\cdot )$ with $p_2(G,\cdot )\le 2$ (see Section 7). Such groupoids appear in many papers see, e.g. [1], [4], [21], [26, 27], [25], [28, 30, 31, 32] and [34].
Classification : 08A40, 08B05, 20M07, 20N02
@article{CMJ_1998__48_1_a9,
     author = {Dudek, J\'ozef},
     title = {Small idempotent clones. {I}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {105--118},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {1998},
     mrnumber = {1614013},
     zbl = {0931.20055},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a9/}
}
TY  - JOUR
AU  - Dudek, Józef
TI  - Small idempotent clones. I
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 105
EP  - 118
VL  - 48
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a9/
LA  - en
ID  - CMJ_1998__48_1_a9
ER  - 
%0 Journal Article
%A Dudek, Józef
%T Small idempotent clones. I
%J Czechoslovak Mathematical Journal
%D 1998
%P 105-118
%V 48
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a9/
%G en
%F CMJ_1998__48_1_a9
Dudek, Józef. Small idempotent clones. I. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 105-118. https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a9/