Compact attractor for weakly damped driven Korteweg-de Vries equations on the real line
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 85-94.
Voir la notice de l'article dans Czech Digital Mathematics Library
We investigate the long-time behaviour of solutions to the Korteweg-de Vries equation with a zero order dissipation and an additional forcing term, when the space variable varies over $R$, and prove that it is described by a maximal compact attractor in $H^2(R)$.
Classification :
35B40, 35Q53, 47H20, 58F39
Mots-clés : Korteweg-de Vries equation; attractor; unbounded domain.
Mots-clés : Korteweg-de Vries equation; attractor; unbounded domain.
@article{CMJ_1998__48_1_a7, author = {Lauren\c{c}ot, Ph.}, title = {Compact attractor for weakly damped driven {Korteweg-de} {Vries} equations on the real line}, journal = {Czechoslovak Mathematical Journal}, pages = {85--94}, publisher = {mathdoc}, volume = {48}, number = {1}, year = {1998}, mrnumber = {1614084}, zbl = {0928.35145}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a7/} }
TY - JOUR AU - Laurençot, Ph. TI - Compact attractor for weakly damped driven Korteweg-de Vries equations on the real line JO - Czechoslovak Mathematical Journal PY - 1998 SP - 85 EP - 94 VL - 48 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a7/ LA - en ID - CMJ_1998__48_1_a7 ER -
Laurençot, Ph. Compact attractor for weakly damped driven Korteweg-de Vries equations on the real line. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 85-94. https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a7/