On operators with the same local spectra
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 77-83.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let B(X) be the algebra of all bounded linear operators in a complex Banach space X. We consider operators T1,T2B(X) satisfying the relation σT1(x)=σT2(x) for any vector xX, where σT(x) denotes the local spectrum of TB(X) at the point xX. We say then that T1 and T2 have the same local spectra. We prove that then, under some conditions, T1T2 is a quasinilpotent operator, that is (T1T2)n1/n0 as n. Without these conditions, we describe the operators with the same local spectra only in some particular cases.
Classification : 47A10, 47A11
Mots-clés : Banach space; spectrum; local spectrum
@article{CMJ_1998__48_1_a6,
     author = {Torga\v{s}ev, Aleksandar},
     title = {On operators with the same local spectra},
     journal = {Czechoslovak Mathematical Journal},
     pages = {77--83},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {1998},
     mrnumber = {1614080},
     zbl = {0926.47002},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a6/}
}
TY  - JOUR
AU  - Torgašev, Aleksandar
TI  - On operators with the same local spectra
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 77
EP  - 83
VL  - 48
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a6/
LA  - en
ID  - CMJ_1998__48_1_a6
ER  - 
%0 Journal Article
%A Torgašev, Aleksandar
%T On operators with the same local spectra
%J Czechoslovak Mathematical Journal
%D 1998
%P 77-83
%V 48
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a6/
%G en
%F CMJ_1998__48_1_a6
Torgašev, Aleksandar. On operators with the same local spectra. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 77-83. https://geodesic-test.mathdoc.fr/item/CMJ_1998__48_1_a6/